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SUMMARY

Four problems related to high frequency wave propagation in blood
vessels have been investigatéd. They are sufficiently different to
Justify a self contained treatment for each one.

A simple plate theory model is utilized to demonstrate that Korotkoff
sounds generated during the systolic phase of the auscultatory measurement
of the blood pressure can be interpreted as a phenomenon of dynamic
instability of the partially collapsed brachial artery. A previous study
of Korotkoff sounds at diastole indicated that the segment of the brachial
artery affected by the pneumatic cuff is dynamically unstable whenever the
intraluminal pressure falls sufficiently below the cuff pressure. Under
conditions of instability the brachigl segment acts like a mechanical
amplifier cgpable of magnifying certain perturbations inherent in the
arterial pressure pulse beyond the audibility threshold. A similar
instability phenomenon is also hypothesized as the cause of the sounds
heard at systole when the intraluminal pressure exceeds sufficiently the
cuff pressure. The theory presented agrees in many respects with evidence
obtained from experimental studies on physical models. For large curva-
tures of the wall and certain types of fluid perturbations, the predicted
stability boundaries cannot be explained on physical grounds at the present
time and must be reexamined in a separate investigation.

The equations of the theory of elasticity for a transversely isotropic
cylinder are applied to study the influence of wall thickness and material
properties on the phase velocities in a fluid filled cylinder. The analysis
is restricted to axially symmetric waves and unprestressed cylinder walls.
It shows that for distension and axial waves, the predicted phase vélocities
agree closely with those from thin shell theory. The phase velocities of
distension waves exhibit a dependence of thickness to mean radius ratio
that is in close agreement with the Moens Korteweg equation. The influence
of transversely isotropic walls on axial phase velocities is small, but is
considerable for distension waves. Experimentally observed phase velocities
in the carotid arteries of anesthetized dogs suggest that the circumferential
modulus can exceed the axial by as much as 200%.



To detect whether small deviations from a circular cross section
can account for a definite trend in the phase velocities; the analysis
of wave propagation in a cylinder of elliptic cross section is under-
teken. The assumptions made are not valid for large eccentricities and
the one waveform from which data is obtained is that which converges to
the axially symmetric case when the ellipse tends to a circle. The
numerical results show an extremely small influence of eccentricity, at
least for values less than 0.5.

A number of thin shell theories proposed for the analysis of pre-
stressed thin cylinders are reviewed in regard to their use for the pre-
diction of the wave transmission properties of blood vessels. The
importance of accounting for the stress resultants due to the transmural
pressure and their.rotations induced by the shell deformation is illus-
trated by showing that their neglect results in physically meaningless
results for torsion waves. An gpproximate theory allowing for large
strains only in the prestressed state is given. The resulting displace-
ment equilibrium equations are nonself adjoint, but this is shown to have

a negligible effect for the physiological problems of immediate interest.
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INTRCDUCTTION

The study of wave propogation in the major blood vessels of
mammals is, for the theoretician, a subject of considersble complexity.
The significant difference between the problems of biomechanics and those
of metallic and other inert structures is in the material properties.

The difficulties of measuring the behavior of even local segments of the
cardiovascular system in a living mammal without markedly influencing the
outcome by anesthetics, response to traumas, or interfering with incredibly
complex metabolic and control mechanisms, are immense. Two of the advant-
ages a specialist in classic applied mechanics has over a resegrcher in
biomechanics are the gbilities to measure material properties and define
an initial or stress-strain free state that is in the neighborhood of

those being investigated. Yor example, in metal shell structures at room
temperature, material properties of small samples that apply directly to
the analysis can be found at all but the highest strain rates, with con-
siderable accuracy. Excising segments of a blood vessel and using these
material properties can lead to large errors. A change in the mean pres-
sure in segments of the aortic arch, carotid sinﬁs ete., trigger barorecep-
tors that result in changes of cardiac output. Subtle chemical changes
result in vasoconstriction or vasodilation, leading to huge changes in
elastic stiffness of parts of the system, particularly the arterioles;
resulting in changes of the prestressed state, throughout much of the

system. No such difficulties befall most of the investigations of classical



applied mechanics. The second.difficulty facing the analyst of cardiovascular
problems is the defining the prestressed state and the influence of sur-
rounding tissues, muscle, bone etc. The mean strains in many arteries

are of the order 0.3, at least an order of magnitude larger than considered

in virtually all engineering shell structures. Also the surrounding tissue
beds, for example, interact with the vessel wall in a manner that is dif-
ficult to assess accurately.

Since so much remains to be discovered about blood vessel wall
behavior it was considered that any serious attempt to account for their
conjectured behavior was doomed to failure for two reassons. Firstly because
of our lack of basic knowledge and secondly because the resulting mathe-
matical complication of the analyses would virtually precliidde the extrac-
tion of numerical data. Therefore a basic assumption of all four chapters
was that the wall material would be treated as a physically elastic solid
and the blood could be adequately represented for our particular needs
as an inviscid, incompressible, Newtonian fluid.

The four chapters are addressed to subjects that are sufficiently
different to warrant each being completely self contained with its own |
notation, references and figures. Chapter 1 is a dynamic stability invest~
igation of an elastic walled fluid container that can be considered as a
simple model of the behavior of the brachial artery with a cuff around
the arm at pressures near systolic. The intent was to see what available
evidence could be obtained tc support or invalidate the hypothesis that
the Kortkoff sounds at systole, that are heard by a physician taking dlood

Pressure, are a manifestation of fluid-structural instability induced by

the cuff pressure.



The theory of rotationally symmetric waves in a circular cylinder
are studied in Chapter Ii using the theory of elasticity to study the
relationship of these results to those of thin (Kirchoff-Love) shell theory
and the influence of wall thickness and transversely isotropic wall pro-
perties.

In many situations tissues exert a force on the bilood vessels
that tend to distort the cross section from its circular configuration.
Chapter IIT addresses the problem of the influence of a slightly elliptic
cross section on the phase velocities.

The final chapter is a review of wvarious thin shell theories that
were developed for the study of metallic shells and their application to
the study of waves 1n prestressed circular cylinders. Some of the assump-
tions on which they are based are discussed and their influence on the
phase velocities of the three types of waves of primary physioclogical

interest are illustrated.



CHAPTER I

KOROTKCFF SOUNDS AT SYSTOLE, A PHENOMENON COF DYNAMIC INSTABILITY

1.1. Introduction.

Anliker and Raman [1] have hypothesized the cause of the Korotkoff
sounds at diastolic pressure as a dynamic instability of fluid induced
oscillations in a circular tube. At systolic pressure the assumption of
the artery as a circular tube 1is, of course, untenable since it is virtually
occluded. At pressures in the neighborhood of systolic, the artery cross
section is markedly flattened, (see Fig. la) having a very small radius
of curvature at two diametrically opposite points and 1is relatively flat
over most of its profile between these corners. In the regions of large
changes of curvature the artery is much stiffer than elsewhere and this
fact leads us to the model we shall use in an attempt to show that Korotkoff
sounds at systolic pressure are also a manifestation of dynamic instability.
This analysis is a continuation and extension of that by Raman [2], [3]
in which the experimental and initisl theoretical work is described.

The system we intend to analyse is shown in Figure 1b. We
assume that the two regions of large curvature can be replaced by rigid
walls and that the remainder of the artery can be modelled as two plates
which can undergo large displacements normal to their surfaces. Initially
these plates are subjected to axial tension, to represent the axial stretch
of the arterial wall and steady state plus perturbation transmural pres-
sures. The analysis follows the well known techniques for such situations.
We assume the stresses, deflections, pressures etc. consist of two compon-

ents, one quasi-static which accounts for the axial stretch and transmural



pressure and the second which analyses the perturbstions about the quasi-
static configuration. The Jjustification for the quasi-static prestress
state is that the pulse frequency is about 1 cps while the human ear can

only percelve perturbations with frequencles greater than 20 cps.

1.2. Quasi-Static Stress in the Artery at Pressures Near Systolic.

Due to the extremely complex constitutive laws needed to accurately
define the behavior of animal tissues over any but a small range of load-
ings, a general theoretlcal analysls of many such problems 1s extremely
difficult. ZEven computing the stresses in a human brachial artery when
it has been compressed by a cuff to measure systolic pressure, appear,
at the present time, to be virtually insurmountgble.. The deflections
involved are almost twice the radius of the artery ian its natural pre-
stressed state, for much of the wall and the influence of the surrounding
tissues, bones and ligaments cannot be estimated quantitatively. Thus we
make no attempt to compute the quasi-static stresses in the artery, or to
quantitatively relate the deformed configuration to the cuff pressure pro-
ducing it. While many sophisticated methods for the "large" deflection
analysis of shell type structures are currently available, the assumptions
on which they are based are too far removed from the problem at hand to
be physically meaningful. In shell theory we are almost always able to
define an initial stress or strain free state and proceed systematically
to derive the quasi~static prestress'stresses and strains. In our problem
it is not reasonasble to define a known state, from which to initiate the

analysis of the pre-stress state.



To make our problem tractable, we shall proceed as follows.
It is well established that like almost all other arteries, the brachial
1s under conside:able pxial stretch with strains of order O.Q. We
restrict our investigation of the quasi-static prestressed state to a
definition of the transverse displacement, the (tensile) axial strain
and the (compressive) lateral in-plane sfrain exhibited.by a rectangular
membrane. This highly idealized model infers that the cuff pressure trans-
mitted by the tissue produces the lateral strain and displacements specified.
However, because of the lack of the constitutive law, the relationship
between the applied cuff pressure and the induced transverse displace-
ment or lateral strain, 1s unknown. We rely on experimental evidence
and the qualitative discussion in Section 1.8, to provide the connection
between shape of the artery cross section and the cuff pressure. The
experimental data obtained on a model of the brachial artery in [2], [3]
and unpublished invivo studies show that the artery is virtually occluded
at cuff pressures only slightly above systolic and provides the rationale
for the choice of the theoretical model. We must now consider the
response to small oscillatory perturbations superimposed on the quasi

static transmursl pressure.

1.3. Oscillations About the Deformed Equilibrium State.

Since we are stddying the vibrations of the plate relative to
the deformed position induced by the static transmural pressure, we must
use geometrically non-linear plate theory. We assume that the(rotationsf
are negligible compared _to unity and utilize the Karman equations which

are well known to be (see [4], p. 417),



l [ w2 % Bew]
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ox oy 352 By2
and
b nfq, 3% % , % 0% 3% %
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G ¥ B >°F
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Let us write F = F° + Fd, w o= wp + wd, where Fd and wd are the stress
function and transverse displacements induced by the pressure perturba-
tions. The perturbation quantities are considered to be small enough
for their products and those of their derivatives, to be neglected.
Substituting into (1) and (2) and separating the "static" and "perturbed"
equations we have for the former, the nonlinear equations for the static
stresses, which will be ignored since they do not describe the physical
situation, as previously mentioned. |

The equations for the dynamic response follow immediastely and

are

2 5% Jy dx oy 32 aye aye N2

and

vVw - +
b 32 3% %% 3% dy° ax°

hd_g[ﬁ 0w P, PP, F R
)
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By2 Bxg dx Jy Ox IOy ox oy ox dy | °



Because the static stress system is independent of =x, we have
3w’/dx = 0, which introduces cénsiderable simplification into (3) and (k).
Now we must consider the static stress resultants N; = h62F0/8x2 and
N; = h82F0/5y2 which constitute the nonvanishing coefficients of (3) and
(4).

To study the quasi-static strain distribution we simplify the
very complex physical situation as follows. These stresses are taken to
be independent of the axial coordinate and they are considered to consist
of two components (i) axial stretch which is always tensile (ii) lateral
in plane strain which is prescribed. For instabilities to develop, we
expect large compressive lateral strains will be needed to overcome the
influence of the axial stretch and the possibility of extremely large
amplitude buckles arises. We invoke whatever tissue forces are required
to maintain the plate in the position specified by w° and the inplane
strains e; and e;- This specification is admittedly somewhat fictitious
but the actual situation ig, as previously mentioned, beyond solution and
it is convenient to postulate a quasi-gstatic state in which the effects
of prescribed inplane strainsand transverse deflection are at least
partially isolated. It is well known that extremely small "elastic foun-
dations" forces can greatly stabilize plates.

Hence we assume that the quasl static deflection of the membrane
can be represented by a half sine wave, namely W = W, cos ny and
u° = v sin 2wxy. The relation between LS and v, can be obtained by
noting ([4] p. 419) that the strain energy for a membrane subjected to a

o)
constant transverse force Ny is



1/2 2 N
V=2(1-v) -1/2 <dy > °> ﬂ]i %Y£>de
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Inserting the displacement expressions and carrying out the integrations

we find

2 2 4 o 2 2
“2 5 OWO 3 wO N& i wo
vV = —5" 2v0 -—t =5 +

2(1-v")

Using theorem of Minimum Potential Energy we have

ov n2 ™o
ov. 2) lwo -5 | =0
2(1-v7)
Thus
nwe
v = Q
o "8
From the stress-strain and strein-displacement laws we have
( F 8 F > o
= €
X
and
22
o \2 W
- VBEFO\ dv i v + eo = 0 2 Cos 2ny + Sin2 ny )} + eo
"% ‘2 a y 2 y
oy y
n2w2
0 (o}



10.

Hence
2_0 2.0
OF = K and OF _ K (5)
~ 2 1 2 2
oy ox
where
n2w2
1 [ ( ) 0 ]
K, = €. +tvie +
1 (l—vz) X y n
and

1 o T wo o
K. = e [e + + ve ]
2 (l-vz) y N X
This demonstrates that the static stress resultants are constants and

substituting (5) into (3) and (4) and making use of the fact that w°/dx = 0

_ Wwe see that (3) and (L4) are simplified to

2 02 4d

| d"w W
VI = ->55""3 (6)

a7y~ ox

and
a X 24 24 20 .24
Vzwdz%[p?_ p5w2+Klaw2+K26w2+dw25F2] 7)
' ot ox oy dy  ox

We note that each of these equations contain one variable coefficient and
it does not appear feasible to simplify the equations further. These
variable coefficient terms also provide the coupling between the two egqua-
tions. The form of the solution is dictated, to a large extent by the
equations of the fluid in contact with the walls. Let us consider the

fluid motion.
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1.4, FEquations of the Fluid.

For the incompressible inviscid fluid flowing down the interior
of the tube shown in Fig. 1, we have:

(i) Equation of Continuity
Vg = 0 (8)
(ii) Bulers equation for the pressure in liﬁearize potential flow is
p=pf(%€+U%ﬁ) . (9)

If we assume that the fluld perturbation conslsts of a distur-
bance of frequency o¢ and wave number k, propagating in the axial

direction, we can write the perturbation potential as:

B(x,y,z,t) = o(y,z) Sin(ot-kx) . (10)

Then, for the perturbing pressure we have,

o]
i

= Py ®(y,z) (o-Uk) Cos(ot-kx)

"

2 pg o(y,z)(f-U/A\)Cos(ot-kx) . (11)

Now the lower limit of the human audible range and hence Korotkoff
sounds, 1s about 20 cps at it is shown in [1] that the dispersion relationship
for this type of blood flow problem is A= EG/f where the bars denote

dimensional quantities.
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(£-U/A) = f(l—ﬁ/EG) (12)

where ﬁ/EG is the ratio of the blood velocity in the artery to that of
the wave's group velocity, which is about one order of magnitude less than
unity. Therefore we reduce (9) to

S (13)

This provides a simplification that will be discussed when we

consider the stability boundary.

(iii) Kinematic boundary condition relating the fluid and wall velocities

in the =z direction

e
- @), oo (14)

Clearly (14) is approximate for large deflections, since the rigorously
correct boundary condition involves veloclties normal to the plate mid-
surface. It 1s important to note that in the kinematic condition we are
matching fluld and wall velocities at the deflected equilibrium position

defined by z = wo'i c/2 for the upper and lower walls respectively.

(iv) The boundary condition at the rigid walls requires that the normal

component of the fluld veloeity vanish, i.e.,

=0 (15)
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Substituting (10) into (8) we obtain

2 2
é—g +-§-§ -kK9=0. (16)
dy dz

Let us put o(y,z) = ¥(y) Z(z). Thus using the separation of variables

in the usual manner, (16) can be written as
2 2 2 2
d 2 /
Y/dy - k° - d"7/dz g —F2 (17)
2 - .
where T is a real positive constant, to be determined, and we may write

B(x,y,2,t) = (Al Cos I'y + B, Sin Fy)(A2 Cosh Az + B, Sinh Az) Sin(ot-kx)

2

(18)

1/2

where A = [F2 + k2] and Ai and Bi are arbitrary constants. If

we put B2 = 0, the potential is symmetric In =z, while A, = 0 ylelds

2

a solution antisymmetric in =z.

1.5. Formulation of the Solutlon.

Having the form of the fluid potential function, we can now
proceed to the corresponding plate motion.
Using (18) in the kinematic boundary condition, we see that the

plate transverse displacement must satisfy



1k,

=

a A
(x,y,t) = p (Al Cos 'y + B, Sin I'y)

X (A, 8inh A(W® +Z) + B, Cosh A(w +3)} Cos(ot-kx) (19)

The four arbitrary constants in (18) and (19) must be reduced
to one, prior to derivation of the eigenvalue problem. This is accomplished
by distinguishing modes that are symmetric or antisymmetric about the
x-y and x-z planes and considering each of the resulting four types of
perturbations separately. Since w°® 1s a function of y, this expression
is non-linear in y. However, the Galerkin method is to be used to reduce
the final equations to a classic eigenvalue formulation.

Let us now turn our attention to demonstrating how the four arbi-
trary constants are reduced to one, depending on the symmetry of the partic-

ular fluid perturbation. To enforce the vanishing of the displacement

(and fluid velocity) in the corners we must require that wd(x,y = %, t)
equal zero.
[ cos L sini ] |a 0
2 2 1
= (20)
r r
_COS E - Sin» -é- ] Bl 0

For non-trivial solutions we must have either I = 2mx in which case,
Al = 0 and the displacement is antisymmetric in y, or T = (2m+l)x in
which case, Bl = 0 and the displacement is symmetrlic function of y.

Thus we can consider four separate cases of fluld perturbations and the
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resultant response, depending on which arbitrary constants are eliminated
from the problem by the symmetry assumed. In each case we have only one
arbitrary constant defining the perturbation fluid potential and plate
displacement amplitudes. The form of the plate stress function Fd can
be seen from (6) and (7) to be the same as wd, except for a different
arbiltrary constant.

We are now at the stage where these expressions for @, Fd and
W& must be substituted into (6) and (7) and Galerkins method used to
obtain the frequency determinant. To do this it is convenient to consider
the cases of Al = 0 and Bl = 0 separately and it is useful to summarize
the expressions that are to be substituted into (6) and (7)

wd(x,y,t) = B} ¥ Sin 2mry Cos(ot-kx) for A, =0
=AY ¥ Cos(2m+1)wy Cos{ot-kx) for B, =0
d X
F (x,y,t) = Cf ¥ Sin 2my Cos(ot-kx) for A, =0
(21)
=Df ¥ Cos(2m+1)my Cos(ot-kx) for B, =0
Bic
B(x,y,2,t) = ~% Sin 2mry {A, Cosh Az + B, Sinh Az} 8in(ot,kx) for A,=0
A{U
=~ Cos(2m+1 )y {A, Cosh Az + B, Sinh Az} Sin(ot-kx) for B,=0
where ¥ = A, Sinh A+ W + %) + B, Cosh ij:wp j:%) and we shall later
0 ¢ o . ¢
use Q = A, Cosh A+ w i'é) + B, Sinh A(+ W _J:-z—).
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Before we continue with our derivation of the frequency deter-
minant, let us consider In a little more detail the differences that
depend whether we admit perturbations that are symmetric or antisymmetric

in z. In the former case A2 =0 and V¥, takes on the form

B, Cosh A(+w® + %)

r&
]

1t

B, (Cosh % Cosh AW® + Sinh %3 Sinh Aw°) (22a)

when the two signs are the same

i

0]
B, (Cosh —Aé’i Cosh Aw - Sinh %5 Sinh AW) (22b)

when the two signs differ

In both these situations the quasi static deflections are symmetric
in 2z and (22b) is merely (22a) with a change of sign in w. oOr saying
this in another way (22a) represents outward deflection and (22b) an inward
deflection. Thus ultilizing, éay, (22a) for positive and negative wo,
yields all the solutions symmetric in 2z and either (22a) or (22b) satis-
fies the boundary conditions at both flexible walls.

The situation for solutions antisymmetric in =z 1is entirely

similar, as we can now demonstrate. Consider all four combinations of

signs we have, for B2 = O,

O K
Sinh A(w + %) = Sinh %; Cosh AW + Cosh %? Sinh AW (2%a)
sinh AGW - £) = -sinh £€ cosh A° + Cosh 2S sinn AW (23b)

2 2 2
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sinh A(-w° + -g-) - Sinh %9 Cosh Aw® - Cosh —2A£ Sinh AW° (23c)
Sinh A(-w° - g) = - Sinh %C— Cosh Aw® - Cosh 5\-32— Sinh AWC . - (23d)

Attempting to simultaneously satisfy the boundary conditions at
both W~ +-§, we do not obtain identical pairs as in the previous case
but two terms that differ only in sign, as must occur for the antisym-
metric situation. Combining (23%a) and (23d) we have one pair and (23b)
and (23c) constitute the other pair with a change of sign in W and again
we need use only one form in the ensuing calculations and utilize positive

and negative initial displacments to obtain all the solutions.

Substituting (21) into (6) and (7) we obtain for A =0
[ku+2k2‘1’(2mrr) —A( )} 8’ 5
dy
2 dmo 2 d W -
- 4k~ g(2mr) A =—— Cos 2my + A| C¥ - EK' ¥ ———= Sin 2mxy B¥ = O
dy L dy2 1
and
2.0 0 \2
B2y 39 gin omy ox + |k* + 2% v (omn)® - A3 —d—w—) sin 2mry
D 2 1 dy |
dy _
20 o]
- 21«:2 QA d g Sin 2mxy - lLk.Q Q(ZmK)A%— Cos 2mmy + A
dy

- = {k—— + p) o° ¥ Sin emry - Ky k2 ¥ Sin 2mry

2
2 2 dw°>
+ Ké <<}(2mn) Yy +V¥ AT <ia§—

O
+ 2mrQA %— Cos Emﬁy>}] BY = 0 (2k)

20
d ;’ > Sin 2mny
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where
2.0 2. 0.\2 2 2
A = (2mn)h ¥ - 6(2mn)” oa TY - 6(emn)® wa?( LY + | T 2w
2 ) dy 2
dy dy- dy
ok 2 0.2 0o .20 2.0
+\11Al‘<%> +5\1/A2<d"’2> +h\1fA23—;—5-‘12-+9A2—WE Sin 2muy
dy dy dy
3 aw° 3/ qu’ 2 aw® a%w°
+ {-4(2mr)” QA =—— + 4(2mr) QA 5— ) + 12(2mn) YA~ — —5—
dy dy dy dyg
d3w0
+ 4(2mr) YA 3 }-Cos 2myy
dy
If, in the above expressions we put B2 = 0 we obtain the solution that
is symmetric in z (see (21)). ILikewise A, = O yields the solution

2

anitsymmetric in z. In writing down the frequency equation we shall
assume the former choice is used, but we note that to obtain the latter
solution we just replace Sinh(Ac/2) by Cosh(Ac/2) and vice versa,
wherever they appear.

Ot obtain the frequency determinant, multiply (24) by Sin 2mry
and integrate from -1/2 +to +1/2. This step leads to many integrals of

which the following may be considered typical,

1/2 o
[ 8in® 2mny Cosh A(w® + %) dy
-1/2
1/2 1/2
= Cosh %? / Sin® 2mry Cosh AwC dy + Sinh %? [ sin® 2mry Sinh AW® dy.

-1/2 -1/2



We deal with these

Cosh Amo

and

o
Sinh Aw

il

i

where (n/EAMO)l/2 T

Cosh(AwO Cos mwy)

19.

integrals by noting that [5]

(2n+1) (EA;O)l/Q In+1/2(AWO) Pn(Cos wy)

Sinh(A.wO Cos wy)

)
2

(en+1) (

n=1, ,5,...

n+l/2

0 )1/2

g Iy /pt8g) B (Cos my)

(AMO) are Modified Spherical Bessel functions

of the first kind and Pn(Cos ny) are the Legendre polynomials. Thus we

can write, for example

b/2

J Sin2 2miy Cosh A.(w0 +

and

n=1,3,5,

(2n+1) (

.

c
2

(2n+1) (

T

2Aw 0

7T

QAWO

)1/2 In+l/2(AWO) {

)1/2

£) a4y = I. Cosh %? + I, sinh 22

1

Ac
2

1/2 o
Sin” 2mwy Pn(COS ny)dy
1/2

: LY
In+l/2(AWO) {1/2 Sin~ 2miy Eh(Cos wy)dy.
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The infinite sums in the Ij integrals must be truncated in
all numerical calculations and fortunately 1t can be shown that the con-
vergence 1s quite rapid over the range of AMO with which we are concerned.

Expanding the Modified Spherical Bessel functions we have, for example

2 L 6 8
X \1/2 (AMO) (Ayo) (AMO) (Amo)
g TaeWo) =2+ —5— * 35 * om0 *3E g Y
2 T
X \1/2 (Awg)” (i)

(2AMO) I11/2(“’"'0)::10,595 *570,270 t

Since A 1is order ten or less and wO < 0.5 1in the work presented, the
expansions for the M.S.B.F. were truncated at (A.wo)8 and only three
terms were considered in each of the summations for the I. integrals.
A few check cases showed the stability boundaries were insensitive to these
numerical approximations.

There are in fact eighteen such integrals that arise in this

problem, many of which are functions of m, nine involving the even

Legendre polynomials and nine the odd. The nine integrals involving ¥y

will be denoted by I§j+1(m,n) where j =0, 1,2, ... , 8 and are

1/2 o

If(m,n) =f Sin”~ 2mwy Pn(Cos ny) dy
-1/2
2, 2

Ig(m,n) = f Sin~ 2mny Sin” ny P (Cos ny) dy (25)
-1/2 n
1/2

I%(m,n) = Sin2 2mxy Cos wy Pn(Cos ny) dy

-1/2
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1/2
I%(m,n) = [ Sin 2mxy Cos 2myxy Sin xy Bn(Cos xy) dy
-1/2
1/2 5 ;
. ., 2
Ié(m,n) = Sin~ 2mgxy Sin"xy Cos xy P (Cos xy) dy
-1/2 n
1/2 5 L
I*. (m,n) = Sin~ 2myxy Sin’ gy P _(Cos xy) dy
11 _l/2 n
(25)
1/2 5 o
¥, (m,n) = Sin~ 2myy Cos™ xy P (Cos xy) dy
15 _1/2 n
1/2 3
¥ _(m,n) = J Sin 2myy Cos 2mxy Sin” xy P (Cos xy) dy
15 _1/2 n
1/2

IT7(m,n) = Sin 2myxy Cos 2mny Sin xy Cos ny Pn(Cos xy) dy .

-1/2

Now we may write the final two equations as

[(kh + 2k2(2m;n:)2) {IlS + 120} - 2(omAwo)2 {135 + ILLC} + 2(kn)2 AwO{I‘jC + I8}

@ 2(2nx) ﬂwO{LF-F%ﬁ}+(&mf‘UﬁS+IéH-—6@mﬂ2(MWJZ{I§S+Iﬁ}

+ (ﬂAwO)u {Ills + IlQC} + 5n“(Amo)2 {1135 + Ith} - hﬂh(AMO)g (135 + IuC}
+ 6(2mn)° o2 MiglTL + I8) - 6,:“(A.wo)5 (1,0 + I, 1 + < M (TL + Tg8)
® b(2m)” shw (I.C + To8) ® 4(2mr) (4w ) (I,.C + I S)

R Loy G o’ 157 T 116

& 12(2mn) (A )" (T8 + T 5C) & b(oma) (I8 + 18@] cx

+ (kn)® Wo(To8 + TC} BY = O
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where we have utilized the shorthand S for Sinh(Ac/2) and C for
Cosh(Ac/2). The second (equilibrium) equation is

. h Pr 2
* g - = (= g
[(coeffic1ent of Cl in the above eq.) D <( +p) d {IlC + Izb}

2

- Klk {IlS + IQC} + KE(—(2mn)2{Ils + 120] + ﬂz(AMO)E {IBS + IMC}
2 —_

- % AWO{I5C + I6S} @ 2(2mx) ﬂAwO{I7C + IBS}) >] B?{

h 2
-5 (k) WO{I5S + I.C) CX =0

There appears to be no hope for a closed form solution of the
frequency determinant and a digital computer program must be relied upon
to perform the bulk of the arithmetic. The procedure is as follows:

(1) Choose a value of m and insert the appropriate I. integrals.
(11) with 02 = 0, solve the determinant for a succession of values of
k, taking note of those values for which the determinant vanishes.
They provide the stability boundary for perturbations antisymmetric
in y and symmetric =z. The background to using 02 =0 as a

stability criterion is reviewed in [1].

Next we must consider the case of perturbations that are symmetric

functions of y, namely I = (2m+l)w, which 1s very similar to the previous

case with the following exceptions:

(1) Replace Sin(2mrxy) and Cos(2mry) by Cos(2m+l)ny and Sin(2m+l)wy
respectively wherever they occur. This affects only the Ig(m,n)

integrals.
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(i1) Replace (2mn) by (2m+l)n wherever it occurs.
(iii) There are six sign changes in the determinant indicated by a circle

around the sign underneath that for I = 2mrn which must be accounted

for.

To obtain the solutions that are antisymmetric in 2z, we just
replace Sinh(Ac/2) by Cosh(Ac/2) wherever they appear. The four cases

that must be investigated separately can be described as follows:

Case 1: Antisymmetric in y and Symmetric in 2z
Case 2: Symmetric in y and Symmetric in =z
Case 35: Antisymmetric in y and Antisymmetric in =z

Case 4: Symmetric in y and Antisymmetric in =z.

1.6. Relationshilp Between Frequency and Wavelength of the Perturbations.

The dispersion relationship is well known to be F = EG/X = EG k/2xn.
If we assume, as a first rough approximation, that the group velocity does
not change with artery cross section and utilize EG = 500 cm/sec from
[1], we obtain F = 80 k. In nondimensionalizing the equations we have
taken b as the basic length. Thus the total circumference of the artery
is 2b(l+c) and assuming a radius of the brachial artery in its natural
condition of 0.4 cm we have 2b(l+c) = 2x(0.4), i.e., b(1+e) = 1.26 cms.
Thus for c¢ = 0.5 we take b = 0.84 em, for ¢ = 0.25, b = 1.0 em. Clearly
the relationship between frequency and wave,number is a function of the

parameter c¢ defining the ratio of the sides of the rectangular cross

section used in the theory, but as an approximate relation we take b as
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unity and hence f = 80 k. This is used to provide an approximate dimen-

sional frequency scale on the curves.

\

1.7. Presentation of the Results.

Before considering the strictly physiological implicgtions let
us note some of the stability boundary characteristics and the manner in

which certain parameters influence them.

1.7.1. Perturbations antisymmetric in y and symmetric in z. The stability

boundaries for a typical set of parameters are shown in Fig. 2 as a func-
tion of the quasl static strains and deflection, with a negative deflec~-
tion being inward. Thus for c¢ = 0.5, wb==-0.25 and for ¢ = 0.25,
Wy = ~-.125 correspond to the two flexible plates being in contact with
each other at the midpoints. Even though it is very doubtful that plate
theory is applicable for such highly curved configurations we include the
corresponding results with this reservation in mind. From Fig. 2 it is
clear that the stability boundaries change character rather significantly
as the artery walls are allowed, by decreasing the cuff pressure or increas-
ing the intraluminsl pressure to move outwards. This is particularly
true for Yo < -.10. Otherwise, we have only relatively small changes in
the stability boundaries. For large outward deflections, the artery cross
section will become more rounded end the "sides" will cease to be rigid,
thus viola%ing one of our basic gssumptions.

In all the data presented here, the change from stability to

instability occurred very suddenly. TUsing 02 = -lOLL yields stability
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boundaries that camnnot, to within graphical accuracy, be distinguished
from those for 02 = 0. The results for all four types of perturbations
exhibited this characteristic. The fact that there is virtually no
change in the boundaries for large negative values of 62 tends to
corroborate the experimental evidence that the change from stable (silent)
to unstable (audible) conditions is quite sudden. Anliker and Raman [1]
have expounded in considerable detaill on the mechanism by which the inaudible
pressure fluctuations in the arterial flow sre amplified into the audible
range by the cuff-induced instability, and we refer the reader to that
work. It suffices to say here that the disturbance is amplified by expl|co]|t
as 1t passes through the unstable artery segment, where T 1g the lesser
of the instability duration or the time taken for it to travel through the
cuff.

When the two opposite plates are not close together, say
WO/C > -0.25 the consistent negative slope of the stability boundaries in
Fig. 2 1s intuitively reasonable. They indicate that for a prescribed
axial stretch the system is stable when the lateral strain is tensile, or
if compressive, of a sufficiently small value. Only when the lateral com-
pressive strain exceeds a certain limit does the system become unstable.
When the plates have a relatively large inward deflection the situation
1s markedly different, as typified by the top of Fig. 2 which illustrates
the characteristic behavior. There is a "separation" wavelength that
divides two entirely different modes of behavior. On the high frequency
or high wave number gide of this critical wavelength, the character of

the stagbility boundaries can be explained by the argument presented above.
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However, at the frequencies below this critical one, the behavior is
somewhat different. The distinguishing characteristic is that in this
wavelength regime, for a prescribed axial stretch, an increase in the
absolute value of the compressive strain stabilizes the system.

In an attempt to explain this, the wall thickness of the artery
was changed by fifty percent and a number of calculations redone. The
value of the separation frequency and the general character of the stability
boundaries remained unchanged as shown in Fig. 6. Similarly a twenty per-
cent chapge in fluid density produced virtually identical stability
boundaries as the data presented. These simple attempts to isolate
whether the phenomenon was primarily due to structural or fluid behsvior
thus failed to shed any light to the problem. It should be recalled that
the equilibrium configuration of the plate 1s a highly curved surface for
which the appliegbility is questionable. The essential behavior of the
stability boundaries shown in Fig. 2 could always be ohserved for any value
of m considered.

As 1is to be expected, the quasi static strains exercise s dominant
influence on the frequency range in which perturbations are amplified.
While e;, the axial stretch of the artery, remaing fairly constant during
blood pressure measurements, this is not true for e; since the cross
section undergoes very significant changes, and the lateral strain varies
markedly along the circumference and with time. This is discussed further
when the physiological implications are reviewed.

The influence of the transverse wavelength, manifested in the

parameter m, is relatively insignificant and the general result is that
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the character of the boundaries is only weakly dependent on m, at least
for m less than five. No atteﬁpt was made to obtain data for larger
values of this parameter.

In the theoretical model, the rather complex cross section of
the artery has been replaced by a rectangle having one palr of sides rigid
and the other able to deflect. Theory provides no gulde as to the most
realistic ratio of the sides, i.e., the parameter c¢. It is clear from
the equations that stability boundaries are independent of ¢, for WC = 0,

and the differences which do occur for the relatively small deflections

are not significant.

1.7.2. Case 2. Perturbations symmetric in y and symmetric in 2. The

general pattern of the stability boundaries is similar to that of Case 1.
When the flexible artery walls are close together we have again two
separate regions of instability which merge into one as w. tends to zero.

o)

The influence of the number of transverse waves is small.

1.7.5. Case 3. Perturbations antisymmetric in y and antisymmetric in =z.

Perturbations that are antisymmetric in 2z exhibit behavior somewhat dif-
ferent from the symmetric, as can be seen in Fig. 5. For ¢ = 0.5 and
small lateral strain, a large range of disturbances is being amplified

even when the two flexible walls are in contact. However, for c¢ = 0.25
there is no "separation" frequency and the theory predicts that unless

the absolute value of the compressive lateral strain is much smaller than
the axial strain, we.would expect to hear a range of low frequency perturba-

tions amplified'for all positions of the artery wall. This evidence tends
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to suggest that Korotkoff sounds due to this mode may be audible when the
opposite walls of the artery are just in contact at the midpoint of the
flexible sides. The wall on either side of this contact point is perfectly

free to oscillate.

1.7.4, Case 4. Perturbations symmetric in y and antisymmetric in z.

These are very similar to those of Case 3 and will not be discussed further.

1.7.5. Further discussion of the stability boundaries. In summarizing

we note that the stability boundaries are highly dependent upon the quasi
static prestress as would be expected. The transition from stable to
unstable conditions is very clearly defined in that 02 =0 and 62 = —th
yield virtually identical boundaries showing that the system changes
rapidly from a stable one to a highly unstable one. This supports the
evidence of a sudden onset of Korotkoff sounds at systole. It must be
noted that at the large axial strains representative of the brachial artery
in situ, the compressive strains needed to produce the instabilities are

an order of magnitude larger than those usually considered in the analysis

of metallic structures.

1.8. Discussion of the Results and Their Relationship to the Physiological

Phenomeng Occurring at Systole.

The fluid-shell instability mechanism postulated by Anliker and
Raman [1] for Korotkoff sounds at diastole, is extended to the systolic

case for which the cross section is no longer a circle.
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We have discussed the four types of behavior that depend on the
symmetries of the motions relative to the major axes of the cross sections.
It is pertinent to question whether any of these modes are more likely
than the others to be the major cause of the Korotkoff sounds. TIn
attempting to answer this question it eases the discussion if we refer
to Fig. 7 which illustrates the motions involved in the four cases. Since
the artery is surrounded by virtually incompressible fluid-filled tissues
which are being compressed by the cuff, the resistance to the deformations
of Case 2 are consideragble since it involves a net change of artery cross
sectional area. In Case 4 there is a movement of the artery center of
gravity in the 2z direction which would necessitate some fluid motion
outside the artery from the positive 2z, to negative 2z sides and back,
during each cycle. This could not occur very easily in the arm under a
cuff. On the other hand Cases 1 andri do not involve a change in cross
gsectional area. This suggests that they are less restrained by either
the tissues or cuff and, therefore, gre more likely to participate in
the generation of the Korotkoff sounds. For this reason attention will
be restricted in what follows to the two Cases 1 and 3 whose motions are
antisymmetric in the y coordinate. While bearing in mind what has just
been said about the stabllity boundaries predicted by the theory, let us
consider what happens as the cuff pressure is raised to well gbove the
systolic. pressure and then is graduslly released, as during the auscultatory
blood pressure measurement, In doing this let us focus attention on the
history of the quasi static lateral straiﬁ. Initially, the cuff pressure
is markedly greater than the intralumingl pressure and the artery is

almost completely occluded as sketched in Fig. 8a. Simple statics
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analysis shows that the guasi static stress is compressive in the artery
walls at all points well removed from the region of very large curvature.
The magnitude of the compressive stress 1s approximately the pressure
difference. It is worth noting that in the theoretical mecdel the concave
inward wall is in tenslon when the cuff pressure exceeds the intraluminal,
as the flexible walls are simply supported at fixed corners. This must
be borne in mind when interpreting the results. Also, the theory is not
applicable and also we do not expect to hear any sounds when large por-
tions of the opposite walls are in contact with each other.

As the cuff pressure is decreased below the maximum intraluminal
pressure, as shown in Fig. 8b, the initial deflection pattern will
intermittently exhibit complete separation of the walls. In this situa-
tion simple equilibrium considerations of the membrane indicate that there
are three contributions to the lateral stress in the wall at the point M.
One is simply (pi - pe) regardless of whether the walls are in contact
or not. The second occurs only when the walls separate and is (pi—pe) d/h
where d 1is the gap between the walls and h their thickness. The
third and for our purposes the most important_component is due to the
curvature of the artery wall. If it is assumed that the points L and
M do not move, the wall element between them is subjected to a stress

of (pe-pi) R/h when the radius of curvature is of constant magnitude

R. Therefore

(p,-p_)
L = ——;EJE—<%4-JQ-— R > for w, <O (27)
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and the sign of this quasi static straln is of paramount importance in
our analysis. As previously stated, the theory becomes questionable for
Jarge deflectlons and in certain cases the stgbility boundaries have a
peculiar character when the initial curvature is large. As of now these’
peculiarities camnot be explained in terms of physical considerations.

A separate investigation is needed to explain them. However, the results
depicted in Fig. 4b for Case 3 are consistently in agreement with our intuition
even when the initial displacements are large and we shgll base much of
the ensuing discussion on these curves. It is clear that to explain
Korotkoff sounds by the theory presented, large quasl static compressive
strains must occur. Let us consider in some detail what happens when

the cuff pressure is in the neighborhood of systolic pressure and let us
hypothesize how the Korotkoff sounds are being genersted.

It has been well established experimentally [2] that Korotkoff
sounds are not audible until the walls have separated as shown in Fig. 7b.
During the time the artery is virtually occluded the proximal peak pres-
sure builds up to a value somewhat in excess of the normal peak pressure
that would exist in the absence of the cuff. As the artery walls separate
due to a lowering of the cuff pressure, a large compressive strain is pro-
duced as soon as the cuff pressure drops below the intrailuminal pressure.
This large compressive strain is due to the "curvature" of the wall and
is represented by the last term of (27). As the inrushing blood attempts
to distend the artery, the inertis and elastic forces in the surrounding
medium and the cuff inhibit such distensioﬁ. Thus the points L. and N
in Fig. 8b can be considered as essentially stationary, while the flexible

wall acts as an arch.
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- To quantise the level of lateral strain that may occur, let us
take the situation when the intraluminal pressure exceeds. that in the
cuff of Smm Hg, E = 100 dynes/em®, h = d =1 mm and R = 2.0 cm. Then
(27) yields e; =-,10. $Since the axial stretch in an artery is at least
0.2, this is seen from Fig. 4b, to be a little too small to explain
Korotkoff sounds at systole, but it is off the right order of magnitude.
But increasing the pressure difference to 10 mm Hg or increasing R
provides a situation where the theory predicts amplification of the low
frequency perturbations when ez = 0.2

The large compressive quasi staﬁic strain state postulated need
exist for only about a tenth of a cardiac cycle or less due to the high
amplification factor which is of order exp. 30 (see [1]). Another
important aspect 1s that it takes a finite time to amplify the perturba-
tions inherent in the arterial flow to an audible level. If the time
duration of the prestress required to produce instability is less than
that needed to amplify the perturbations to the audible level so sounds
are heard. Thus when pe<:pi for a sufficiently small time duration,
the human ear will not detect sounds. Thls suggests that the susculta-
tory systolic peak will be slightly below the peak intraluminal pressure.
On the other hand, and as previously mentioned, while the brachial artery
is. occluded the pressure bulilds up the systolic peak proximalkto the
cuff to a level markedly greaster than when the cuff is removed. Experi-
mental evidenée suggests that the latter influence is the more significant
and the auscultatory technique generally leads to an upper bound of the

systolic pressure.
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The hypothesis presented appears to support many of the facets
evidenced in experiments [2] and [6] in which measurements were made of
the guasl static pressure and of the Korotkoff sounds generated in s
physical model of the brachial artery. Figure 8 gives a diagram of the
experimental setup and tracings of representative sounds and pressure
recordings and shows the microphone sensed fluctugtions prior to the
human ear. This seems to support the contention that it takes a finite
time for the perturbations to be amplified to the sudible level and the
microphone responds at a lower level of amplification than the ear.
Another very interesting facet illustrated in Fig. 8 is that the distal
(downstream) pressure measurement F exhibits high frequency fluctuations
for cuff pressures above systolic while that at the proximal end of the
cuff model at C shows them only very slightly. This tends to support
the idea of the cuff acting as a mechanical amplifier which magnifies
the perturbationsas they propagate through the segment of the artery
affected by the cuff. If the Korotkoff sounds were due to a sddden
collapse of the artery wall, the response would be equally strong at
point C as at point F.

As the cuff pressure is reduced the durstion of the cardiac cycle
in which the intrsluminal pressure exceeds that of the cuff is increased
as indiceted in Fig. 8c. This should lead to an increase in the Korotkoff
sound intensity as is indeed observed, clinically and experimentally.

Thus far we have restricted the discussion to that part of the
cardiac cycle when w,. 1s less than zero and the intraluminal pressure

0
exceeds that in the cuff. For L greater than zero the artery becomes
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approximately elliptic in cross section and the gquasi lateral strain in
the artery 1s compressive onl& during that phase of the cardiac cycle in
which the cuff pressure exceeds the intraluminal pressure. Once the artery
takes on this shape the theory and intuition lead us to expect audible
pressure fluctuations only during the downstroke from the systolic pesk
of the cardiac cycle. Looking at Fig. 9, we see this is precisely what
happens. The initial sounds recorded by the microphone occur just at

the peak of the quasl static pressure at F, measured downstream of the
cuff. TIf we superimposed on the recording of F & sinusoidal wave to
approximéte the quasi static pressure of the cardiac cycle as 1t would
be without the modulation we see that as the cuff pressure is reduced,
the Korotkoff sounds are generated progressively further/along the down-
stroke from the systolic peak. Explaining the behavior when the cuff
pressure approaches the average of the cardiac ecycle is beyound the scope
of this investigation.

In trying to assess the influence of the arterial stiffness on
the systolic pressure, it appears that a reduction in the axigl stretch
leads to an increase in the systolic pressure measured by the ausculta-
tory technique. To illustrate this, let us sssume, as a rough approxima-
tion that for =a préscribed deflected shape of the flexible wall, that
the lateral quasl static strain is directly related to the cuff pressure
and for illustrative purposes only, focus attention on the curves for
Wy = -0.10 in Fig. kb. If we have e = 0.35 and e; = -0.20 or less,
we have no perturbgtions amplified and we conclude the cuff pressure is
gbove systolic. If instead, we take ei = 0.2, a range of frequencies

is amplified and if sufficiently so, we are lead to believe that the
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cuff pressure is below systolic. This reduced axial streteh leads to
increased levels of systolic pressure measured by the guscultatory
technique.

The influence of thickening of the arteries can be inferred from
Fig. 6, from which we note that the range of frequencies that are amplified
by the instability is reduced. This means that a thicker artery is either
stable or has a smaller region of instability which results in a slight
reduction in the systolic pressure. Therefore, the two effects that can
occur in older persons, namely stiffening of the artery wall and reduc-
tion in axial stretch tend to have bpposite effects on the measurements
of systolic pressure by the auscultatory technique. This may mean the
method's accuracy is maintained regardless of age provided the two influences

mentioned are reasonsbly well balanced.

1.9. Conclusions.

The simple theoretical model of the brachial artery subjected to
a cuff pressure, predicts amplification of a range of the lower frequency
perturbations inherent in the arterial blood flow. Several aspects of
the hypothesis put forward to explain the Korotkoff sounds at systole
as an example of fluid-shell instability induced by the cuff pressure
are in substantial agreement with available experimental evidence. For
cuff pressures well gbove systolic the artery is virtually occluded and
the theory is not applicable. As the cuff pressure drops below the

intraluminal peak a range of low frequency perturbations ls amplified due
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to the instability caused by'lgrge compressive strains. As the cuff
pressure decreases, the duration of the instability increases, leading
to more intense Korotkoff sounds.

It is shown that decreasing the axial stretch of the artery
can lead to increased systolic pressures measured by the auscultatory
technique while increasing the artery stiffness reduces the high frequency
content of the initial Korotkoff sounds.

The pecular behavior of some of the predicted stability boundaries
for certain mode shapes and the artery walls which are strongly deflected
by the cuff pressure cannot be satisfactorily explained. While these
discrepancies occur outside the range of strict applicability of the
plate theory utilized and only for certain modes, it i1s not clear why
the stability boundaries exhibit intuitively reasonable behavior for some
types of perturbastions but not for others. This behavior must be investi-
gated more deeply in a separate analysis.

It 1s considered that there is much evidence to support the
hypothesis that the Korotkoff sounds at systole are also a manifestation

of dynamic instability which amplifies the perturbations above the audible

level.
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NOTATION

b Width of the rectangular tube model of the
artery

c=c/b Nondimensional depth of the rectangular tube
model of the artery

Cq = EG/—GE Nondimensional group velocity

2 2 . . . .

D=nh /12(l—v ) Nondimensional bending stiffness of the artery
wall

E Young's modulus of the artery wall

F o= F/EEE Nondimensional stress function

f = eﬂfﬁio Nondimensional frequency

h = h/b Wondimensional artery thickness

% .
Ij, Ij K Integrals defined in equ. (25)
3

Kl’ K2 Nondimensionagl static prestresses in the
artery

k = 21/A Wave number

m Nunber of half waves in the y direction

N, N, N Nondimensional stress resultants in the

X yoXy

artery



e ()

p = p/E
q = q/E

t = &OE
U = ﬁ/ﬁio
w = w/b

Xy¥22 = ;C/E: 5’/5: 2/“;J

o = a/o,

By = 8/, T2(1-?)1H/2

58.

Legendre polynomial
Nondimensional pressure
Nondimensional transverse force
Nondimensional time
Nondimensiongl blood velocity

Nondimensional transverse displacement of

the artery
respectively, the nondimensional coordinates

2mn/b for perturbations antisymmetric in y
(2m+1)n/b for perturbations symmetric in ¥y

[F2+k2]l/2

Nondimensional wavelength

Poisson's ratio

Nondimensional density of the artery
Nondimensionagl density of the blood
Nondimensional fluid perturbation potential

Nondimensiongl circular frequency

The normalizing frequency

Denotes a dimensional quantity
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Fig. 6. Influence of Wall Thickness on the Stability Boundaries
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CHAPTER IT

AXTSYMMETRIC WAVES IN THICK WALLED CYLINDERS CONTAINING
AN INVISCID INCOMPRESSIBLE FLUID

2.1. Introduction.

The study of waves along thin tubes containing various fluids
allowing for viscosity, compressibility, a non-Newtonian constitutive law
for the fluid and viscoelastic behavior of the walls has become a subject
of widespread interest. The Literature, much of it devoted to promoting
a deeper understanding of the flow of blood in arteries, is fairly exten-
sive and making no pretense of being complete we mention [1] to [8], as
being typical. One thing that all these analyses have in common is that
they assume the +thickness of the arterial wall to be small compared to
its radius and use thin shell theory based on the Kirchoff-Love hypothesis.
Apart from the intrinsic interest in relaxing this assumption and repre-
senting the wall by the equations of the three dimensional theory of elas-
ticity, this type of analysis has applications in biomechanics. It is
important to know the effect of thickness on wave speeds. While the
arteries are known to consist of three layers, it will be assumed that the
elastlc properties and densitles are the same in each layer. It may well
turn out that viscoelastic behavior will have to be allowed for, to yield
more satisfactory descriptions of these phenomena, but the present analysis
may serve as a first step in such analyses. Maxwell and Anliker [4] show
that the type I waves (i.e., in#olving large radial displacements for all
but very low frequencies) with which we are primarily concerned, the

viscoelagtic properties of the vessel wall have little effect on the phase
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veloclity, but a strong influence on the dissipation. However, in experi-
ments on living animals it is difficult to isolate the dissipative forces
in the vessel wall from those of the surrounding tissue, unless the tissue
is removed.

Klip [9], [10] Mirsky [I1l] have relaxed the thin shell assump-

tion, but not attempted to solve the problem of interest to us.

2.2. FEduations of the Elastic Continuum.

The linear displacement equations of motion for thick orthotropic
cylinders are well known. We intend to restrict the analysis by intro-
ducing three assumptions. Firstly, we consider transversely isotropic

(i.e., eylindrically anistropic) bodies which introduces into Hookes law

Grr Cll C12 13 Crr
%0 Ci2 Con 23 €00
x| %3 O3 330 | xx

Trx T Chh T rx?

Tro = C55 Yrg

%0 = 66 "xp

the following simplifications

C.,=C

13 C = C and C

23> Y22 T Y11 55 = Cuy
Secondly, all motions are restricted to being rotationally symmetric and
having zero circumferential displacement, i.e., v = 3/38 = O, and finally

the analysis is restricted to the case of zero prestresses. Thus the



55.

equllibrium equations become

2

2 2

Ow  low W o ou _,dw

Cll< 7 *Eor rz)*%h a}(z*“w*%ﬁé?ai“’
(1)

2 2
Ow . 1 dw du ., 1du
(ClB+Chh)<§er+;&' T BT )T TP
The solution of coupled equations of this type are most convenlently
accomplished by the introduction of displecement potentisls and following
Prasad and Jain [12] we introduce the following forms for the displace-
ments in a body of infinite length, undergoing steady harmonic oscillations
propagating along the axis
d

wix,r,t) = a% Sin{ax - wt)

(2)

u(x,r,t) = U Cos(ox - wt) .

In terms of ¢ and U, functions of r only in this case, the equations

of motion are:

(3)

if
(&)

d v2
ir [Cll d + KIQ - uu]
and

V20 + cu#vaU + AU = (k)

|
o

where
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and

w=(Cp5 + Cpla -

To obtain uncoupled equations for @ and U we take (d/dr + L/r)

operating on (3) to obtain

ot

P )
Cll®+7\1V<I>—uVU=O. (5)

Multiplying (5) by C)), and (4) by p and adding, we obtain

-1 2 2
U=-X2~E[CIICMV<D+(?\10M+H)V2®] . (6)
Substituting (6) into (5) we obtain

VE{C:L:L Cu Vo + (1 + N Gyt A Gpy) v + MAel =0 . (T)

Prasad snd Jain [12] showed how Bessel Functions can be used to solve
equations of which (7), involving even integral powers of the Laplacian
operator, 1s a typical example. To be complete, we give a brief Intro-

duction of their technigue. In cylindrical polar coordinates the equation

V2<I> = —pz(b

has for p2 > 0 solutions of the form
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o(r) = AJO(pr) + BYO(pr)

Since (7) is a quadratic in the Laplacian operator we may replace

2 2
V¢ by -p ¢ and write the solution of (7) as

2
ox) = 5 (8 Ileyr) + By Yo(er)) (8)
i=
and
5 .
u(r) = 12% Fi{a; To(pyr) + By Y (b)) (9)
where
P o= L4

1 2 2
Tl (AL Cyy, + 7)) Y - Cqq Cyy By

and p? are the roots of

Cp O B - W8 H At 0 F AN =0 (10)

Since the zero roots of (7) do not contribute to the solution they are
not considered further.

Clearly it is not necessary that the solutions of (10) for p2
be either real or greater than zero. For that range of parameters which
yileld p2 < 0, the method mentioned above is valid if we just replace the
Bessel functioﬁs by Modified Bessel functions and the minus sign in (10)
by a plus. For problems to be studied here, the discriminant is always
greater than zero, so we need not be concerned with Bessel functions of

complex argument.
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Solution of the problem necessitates that the boundary conditions
on the inner and outer surfaces of the thick shells be specified. Before
doing this it is convenient to express the displacements in terms of the
Bessel Functions, so they will be available for future use. Substituting

(8) into (9) and (2) we find for the displacements w and u the expres-

sions
1 1 2 2
w(x,r,t) = {rll(r) A+ Fig(r) B, + rll(r) A, + Flg(r) B,} Sin(ox-wt) (11)
1 1 2 2
u(x,r,t) = {Pgl(r) Ay + I‘22(r) By + r21(r) A, + Fee(r) 132} Cos (ax-wt) (12)

in which we have introduced the following shorthand notation for the eight

functions of r. Tor pi >0

i
rl () = F, 7. (p,r) rt(r) = F, Y (p.7)
21 i 01 22 - i ToVi )
For p? <0
i (r) = p, I,(p,r) rt (r) = -p, K, (p,r)
11 IS R R e | 12 - i T1vi

i i
le(r) =F; Io(pir) F22(r) = F, Ko(pir) .



59.

2.%. Boundary Conditions.

We shall consider only one type of condition on the surfaces
of the thick shell, namely, stress specified on the surfaces. “

The fluid pressure must equal the radial direct stress at the
contact surface and at stress free boundaries they obviously vanish.

b. When the inviseid fluid is in

Hence, Orp = 0 and Tog = 0 at r
contact with the inner surface, 7, =0 and o _ = -p, op/dt at T = 1.

Introducing the displacement functions we have

AW W du
e =1 T2 PO

i i 2 2 .
{Qll(r) Al + le(r) B, + Qll(r) A2 +~Ql2(r) Bg} Sin(ox-wt)

where for p? > 0

2

C.. p C., P,
i 11 1 12 “i
2
. C P C P,
i 11 71 , 12 71
2
and for Py <0
2
; C.; p C P,
i 11l 71 12 1
Qll(r) = —_—'2'—" {Ig(pir) + IO(Pir)} + —-—i.—'— Il(pir) - Cl} a Fl IO(Pir)
2 .
€11 Py €1 P

it

Qiz(X) ~=5— {Ky(p;7) + K (7)) - —F— = K (py7) - Ci1s @ F; K, (pyT) -
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For the shear stress, we find

d ow
Trx T Chh‘S% * EE)

i

{sz"l(r) Al + Qéz(r) B, + ggl(r) A2 + Qgg(r) B?.} Cos(ox-wt) (1k4)

where, for p? >0

le(r) = - (Fy +a) py; I (pyr)

and for p? < 0

Q;1<r) = C,(Fy +a) py I,(p;7)

it

Qge(r) “Cp(Fy +a) py Ky (py7)

These two relations for the stresses give us the two stress boundary

conditions which will be used later in the formulation of the frequency

determinant.

2.4, Perturbation Pressure Applied by the Fluid to the Shell Imner Surface.

According to linear potential flow theory, the pressure p at

the inner surface of the shell ig given by



61.

where @ 1is the velocity potential, V +the flow velocity and P is

the fluld density.

+

In many investigations involving blood flow in the cardiovascular
system the flow veloclty V 1s sufficiently small for us to heglect
Vop/dx compared to op/dt.

To arrive at the eigenvalue problem, we must express ¢ in
terms of the four unknown constants Ai and Bi introduced in the
solution for the thick shell equations. This is accomplished as follows.
The fluid potential function satisfies the continuity equation

QEQ X op _ a2 é}-Cos(ax - wt) =0
arg r or )
Since ¢ 1is finlte along the axis of the cylinder, the solution of

this equation is

P(x,r,t) = HIO(ar) Cos (ax-wt)

where Io(ar) is the zero order modified Bessel function of the first
kind. The constant H is obtained by satisfying the kinematic boundary

condition

ow
ot r=1 r=1

which yields

H = aﬁgﬁgﬁ-[ril(l) Al + Fig(l) B, + Fiz(l) A, + FiQ(l) 32] .
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Therefore we can write for the velocity potential

olylar) 1 2 2 .
o(x,r,t) = W [I‘ll(l) A+ rl?_(l) B, + rll(l) A+ rm(l) B, ] Cos (ax-wt)

(16)
and for the perturbation pressure
1 1 2 2 .
p(L,x,) = [I);(1) A +T,(1) B, + Pil(l) Ay + T5,(1) Byl m” Sin(ax-ut)

(17)

where m = p, Io(a)ﬂz Il(a).

2.5. PFormulation of the Figenvalue Problem.

By enforcing the stress boundary conditions at the inner and
outer surfaces of the shell we obtain a classical eigenvalue problem.
Clearly the two boundary conditions on the inner surface must now reflect
the vanishing of the shear stress and the radial stress being equal to the
fluid perturbation pressure. Those on the outer surface enforce the vanish-

ing of both stress components. Hence the eigenmatrix is

05, (1) 55 (1) 5, (1) RCORN IS
w7 (140 (1) 00T, (1)407,(0) wfrf (10402, (1) w2, (145,00 || B)
a1, (b) a1, (b) a° (b) a2, (b) A,
a5, (0) a5, (b) 25, (b) as,(0) |3,

(18)
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2.6. Numerical Solution of the Eigenvelue Problem.

To obtain satisfactory accuracy for the mode shapes it 1s neces-
sary to exercise considerable ingenuity in the extraction of the ei%en—
values and eigenvectors from (17). Firstly, 1t is not adequate to use
what may be described as "commerically available" Bessel function routines
and special techniques were used. The Beggel functlons Jn(x), Yn(x)
and In(x) for n=0,1 and 2 are computed by the ascending serieg
for small x and asymptotlc series for large x. The Bessel function
Kh(x) for n =0 and 1 1is computed by ascending series for x < 10,
an integral for 10 < x < 40 and the asymptotic series for x > L4O.

The recurrence formula is used for n = 2. The computer subroutines

are double precision arithmetic for the series summation. The series are
terminated when the current term does not contribute any information to
the single precision part of the summation.

Secondly, finding the zeros or roots of the determinant was
accomplished with the aid of the following technique using also double
precision arithmetic. A special form of two word arithmetic 1s used
throughout the root finder. The double precision value of'the funetion
is converted to a single precision word which has been scaled to be between
0.5 and 1.0. The second word is an integer number which represents the
power of two scale factors. Arithmetic overflow or underflow 1ls thereby
eliminated and no further scaling is required.

A lower and upper bound of the range in which the roots are
sought 1s supplied as part of the input dafa. Two initial guesses are

obtained using the lower bound and 1.1 times the lower bound. Linear
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interpolation 1s used to compute the next estimate and it is examined
for convergence. If it satisfies the convergence criterion (Xi_xi+1)/xi+1

< 10_6, a zero has been computed. If not, the estimate F(x is tested

1+41)
for a sign change. If the sign has not changed, the linear interpolation
procedure 1s repeated using the two latest estimates. If the sign hés
changed, a root has been bracketed. Of the three available estimates the
two which maintain the bracketing and are closest to the root are chosen
for the next linear interpolation. If convergence is not obtained within
five iterates, the bracketed region is halved and the process repeated.
Convergence 1s thereby virtually guaranteed.

If the linear interpolation yields an estimate outside the bounded
region it is discarded. The bounded region is searched at twenty intervals
for an estimate which will be suitable to restart the linear interpolation.

Each zero 1s numerically divided out at each iteration, thereby
preventing its calculation a second time. After the requested number of
roots have been'computed or thg bounded region searched at twenty steps,
the function is examined for the changes in sign at ten equal steps between
each root. A sign change of the function indicates one or more roots
remain to be computed.

After the first root has been found, the next initial estimate
is chosen to be .8 times the previous root or 1.5 times the lower bound.

It is desirable to find the roots in ascending order and not to miss any
of them. This procedure could skip single roots in groups of two or skip
multiple roots. In practice this problem is minimized by chosing small.
bounded regions to search and using as an initial estimate a smaller value

than the previous root computed.
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The linear interpolation method theoretically will not converge
to multiple roots but in practice it is successful due to the inaccuracies

in each computed root and the truncative computer srithmetic.

2.7. Presentation of the Results.

The influences of wall thickness and anisotropy are presented
separately for each of the two types of waves. The waves referred to as
Type I are those whose modes involve large radial displacements at the
higher frequency, but in the limit of zero frequency the :adial displace-
ment vanishes. They are also frequently referred to as the "pressure"
modes since at the higher frequenciles they are associated with strong
pressure fluctuations. The Type III waves involve predominantly axial
displacements at all but the lowest frequencies and are not significantly

affected by the presence of an inviscid fluid.

2.7.1. Type I waves for isotropic walls. The phase velocity as a function

of frequency is shown in Flgure 1. The results of this analysis and those
based on thin shell (Kirchoff-Love hypothesis) theory for the Type I phase
velocity are rather similar at least for h/a < 0.2, with the latter
yielding a slightly lower velocity. Both theories show a minimum velocity
at o ~ 0.6, and a very similar effect of thickness that is virtually
independent of frequency. The variation of phase velocity with thickness
follows very closely the classic Moens-Korteweg relationship, insofar as
it increases like the square root of the r;tio of wall thickness to mean

radius.
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The mode shape predictions, as a function of frequency, based
on thin shell’theory are also quite wéll substantiated by the theory of
elasticity analysis given here. As examples, the mode shapes have beeﬁ
plotted in Figure 2 for two values of the nondimensional frequency.
Since the spatial distribution of displacement cannot be defined in terms
of the values at the mean radius, the comparison with thin shell theory
is not completely straight-forward. For w = 0.1, thin shell theory [4]
predicts that the modal amplitudes of the axial and radial displacements
at the middle surface will be almost the same. This is,corrdborated by
the elasticity solution shown in Figure 2a. We note that the modal ampli-
tudes do not change significantly with thickness or as we traverse the
wall of prescribed thickness. The thin shell analysis predicts for
®w = 0.5 a radial displacement of the middle surface which is approximately
eight times the axial displacement, for h/a = 0.1. For the elasticity
solution, this factor is about ten. However, at this frequency both the
effect of wall fhickness and the variation of modal amplitude as a function
of the radius are much more pronounced. In particular, it is clear that
at this higher frequency the axial displacement is considerably less at
the outer and hence visible surface than it is at the inner surface where
it is in contact with the fluid. The thinner the wall, the less is the

motion visible from the outside.

2.7.2. Type III waves in isotropic walls. The elasticity solutions for

these waves shows that the thin shell theory underestimates the phase

velocity by about eight percent for all frequencies when the wall thickness
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to mean radius ratio is 0.1. As we raise the wall thickness the waves
become slightly dispersive with a phase velocity that decreases with
increasing frequency while thin shell theory predicts a very small increase
in the phase velocity as the wall is thickened at least for h/a less

than 0.2. The modal amplitudes are shown in Figure 3 which confirms

that radial displacements are very smasll in comparison with the axial
displacements. We note that, as in contrast to Type I waves, the maximum
radial displacements are at the outer surface. The smallness of the radial
displacements confirms the experimental observation [13] that axial waves

are assoclated with extremely small pressure perturbations.

2.7.3. Material propertles of transversely isotropic vessel walls. The

restriction of the wall equation of state to transverse isotropy means
that 1t is possible to select five elastlic parameters. This was done by
choosing the three elastlc moduli, the shear modulus and one Polsson's
ratio and utilizing the equations of [14]. To keep the Polsson's ratios
no greater than 0.5 it 1s necessary to restrict the radial modulus to be
regsonably close to the circumferentlial value. For convenience they were
restricted to being the same.

0f the resulting elastic constants, Cll which exercises a
dominant influence on the Type I waves, is approximately equal to 1.4

times the modulus ratio. On the other hand, C and Chh which have

33

a marked effect on the axial waves, very much less as a function of the

modulus ratio and in fact the former decreases when this ratio increases.
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The constant Chh can be specified independently of the others and a
variation of Ch from 0.33 (the value for an isotropic wall with v = 0.5)

to 0.2 produced & virtually negligible change in the results.

2.7.4. Type I waves for transversely isotropic vessel walls. The gignif-

icant influence of this particular type of orthotropic materiasl on the
phase velocity of Type I waves is shown in Figure L4, for the case of a
relatively thin wall with h/a = 0.1. The low frequency regime is the
one of primary physiological importance and at zero frequency, the phase
| )1/2.

velocity is proportional to (EB/EX The reason for this 1s the large

change in C mentioned previously. The marked change in the modal dis-

11
placements 1s illustrated in Figure 5. The axial displacement for the

low frequency situation (w = 0.1) and the radial for the high frequency
case (® = 0.5) are hardly affected but for each frequency the smaller of
the two displacements i1s heavily dependent upon the ratio of the moduli.

As the modulus ratio increases, the radial displacement amplitude decreases

for the low frequency case. This sensitivity of the mode shape to modulus

ratio could be utilized to assess the degree of anisotropy.

2.7.5. Type III waves in transversely lsotropic vessel walls.

The small reduction in phase veloclty of the Type III waves,
as the modulus ratio increases 1s to be expected from the small reduction

in C53 that has been discussed previously.
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2.8. Comparison of the Theory with Experimental Data.

Recently obtalned experimental results, such as those by Moritz
[13] on the wave speeds in the corotid arteries of anesthetized dogs 'is
reproduced here as Figure 6. The first prerequisite, before a comparison
canbe made between theory and experiment is to reduce his results to
nondimensional form. This is considerably facilitated because the Type III
waves are so lpsensitive to the modull. The square of the nondimensional

wave speed is given as
2 =2 ==
c”=c p/Ex

Moritz has measured c¢ for Type III waves as about 30 meters/sec, p is
close to 1.0, g/cmB, ¢ can be taken as unity and (18) yields a value of
9 X 106 dynes/cm? for Ex' Teking Moritz's value of 0.225 cm for a and
using the definition of &O’ we obtain ® = ®/1.3 X loh. This completes
the reduction of Moritz's data to nondimensional form and the scales
have been added to Figure 6.

We note that a frequency of 100 Hz corresponds to an extremely
small nondimensional frequency and we are able to use the zero frequency
phase velocities for comparison with the experimental results. The non-
dimensional phase velocity for the pressure waves, from Moritz's experi-
ments is approximately O.4. Hence, the ratlo of the elastlic modull is
EQ/Ex = (o.h/o.225)2 = 3.16. This suggests that the carotid artery of

dogs are significantly anisotropic and we would expect to find the circum-

ferential modulus about three times the axial modulus. However, it must
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be remembered that the curves presented are limited to transverse isotropy
with equal redial and circumferential moduli. To our knowledge no experi-
mental evidence is available on the radial modulus and it would be very

difficult to obtaln.

2.9. Conclusions.

Using the equations of elastlcity for an unprestressed, transversely
isotropic cirecular cylinder to represent the walls of blood vessels, we
have shown the importance of both wall thickness and anisotropy. The
axial waves are but little influenced by either wall thickness or anisotropy
of the types considered. However, the pressure or "Type I" waves are
significantly affected by both. Increasing the wall thickness ralses

this phase velocity by approximately the ratio of (h/a)l/2

as copuld be
expected on the basis of the classic Meons-Korteweg equation. For a mean
radius to wall thickness ratio of ten, the phase velocity predicted by
the thin shell analysis 1s about ten percent less than that corresponding
to the elasticity solution. The influence of wall thickness on mode shape
agrees at least qualitatively with the thin shell approximastion.
Increasing the circumferential and radial elastlec moduli, relative
to the axial, produces very little change in the phase velocity of axial
waves. For the pressure waves the phase veloclty 1s approximastely propor-

tional to the square root of the ratio of the circumferential to axial

moduli. The mode shapes are also merkedly affected by the wall properties.
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A comparison of the theory with recent experimentasl results for
the gpeed of axial and pressure waves in corotid arteries of anesthetized
dogs suggests that the carotid wall is transversely isotropic with a

circumferentisl moduls three times the axial.
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NOTATION

Ai Arbitrary constants in the solution of the eguations
of motion

a Inner radius of the shell and normalizing geometric
dimension

a Nondimensional mean radius of the shell

Bi Arbitrary constants in the solution of the eguations
of motion

b = b/a Nondimensional outer radius of the thick shell

Cij = Cij/EX Nondimensional elastic constants of the thick shell
c = E/[E’/B]l/2 Nondimensional phase velocity

Ex Normalizing (axial) Young's Modulus

Ee Circumferential Young's modulus

Ii,Ji,Ki,Yi Bessel functions of integer order

m = pp Ip(a)/a I, (a)

Py Roots of equation (6a)

D, ﬁ/ﬁx Nondimensional fluid pressure on shell inner surface

r = r/a Nondimensional radial coordinate



-

a, 21/A

Nondimensional time

3.

Displacement potential introduced in equation (2)

Nondimensional fluid velocity

Nondimensional axial displacement

Nondimensional radial displacement

Nondimensional axial coordinate

Nondimensional wave number

Functions introduced in equation (7)

Shear strain

Direct strain

Nondimensional wavelength

2 2
(o ‘CLMO‘)

2
(po” - C55 @

(C15 + Clm)a

Poisson's ratio

Nondimensional density. of the shell wall

Nondimensional fluid density

2)



0. . s
Jdd Jd- X

Th.

Nondimensional axial stress

Displacement potential function introduced in

equation (2)

Fluid potential function introduced in equation (9)
Nondimensional shear stress

Nondimensional frequency

Normalizing frequency

Denotes a dimensional quantity
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NONDIMENSIONAL PHASE VELOCITY
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DISPERSION OF AXIAL, TORSION AND PRESSURE
IN CAROTID ARTERY (TAKEN FROM LI31)
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CHAPTER III

DISPERSION OF PRESSURE WAVES IN FLUID FILLED CYLINDERS OF
ELLIPTTIC CROSS SECTION

3.1. Introduction.

A review of the literature on the flow of blood in arteries and
veins as well as that devoted to wave propagation in thin shells, suggests
that an overwhelming majority of lnvestigations have focused on bilood
vessels with a clrcular cross sectlon. In fact, we are not aware of any
numerical computation of the wave speeds in a prestressed shell of elliptic
cross section, other than that by Kresch [1] who used electric circuit
analogies to show that the cross sectlon shape exercises a very small
influence on the phase velocity of the pressure waves. The approach taken
here is that of engineering mechanics and follows quite closely the work
of Anliker and Maxwell [2].

One significant complication of a blood vessel whose cross section
is noncirecular is that, in general, the quasi static transmural pressure
distorts the cross section to a different shape and lnduces bending stresses.
In this investigation we restrict the transmural pressure to be that which
produces a membrane prestress state. It is alsoc assumed that the consti-
tutlve eguation for the vessel wall is that of an lsotroplic and linearly
elastic body. Since we are only concerned with local behavior over a small
range of the stress, strain curve, thls is a tenable assumption. The purpose
of the investigation is to check whether deviations from a circular cross
section can account for a definite pattern in the transmission of pressure

waves in blood vessels.
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3.2. Fluld Motion and its Relationship to the Shell Motion.

For an incompressible, inviscid fluid flowing irrotationally
in an elliptic cylinder as shown in Figure 1, the equation 6f continuity

in terms of the velocity potential function @ is,

ve+22 .0 (1)
A’

o
2
where V2 is the two dimensional ILaplacian operator in the elliptic
coordinates (&, n) which are related (see [3]) to the Cartesian coordin-

ates y and =z by
y=eSinh § Sinqy and =z = e Cosh £ Cos 1 . (2)

In the limit, as the eccenitricity tends to zerc and the elllpse becomes
a circle, §¢ and 7 reduce to the cylindrical polar coordinates. All the
geometric variables are nondimensionalized by dividing by the semi-major
axls length.

Considering wave  propagation along the axis of the cylinder,

we assume that the velocity potential function has the form
o(E, M, X, t) = ¥(E,n) Cos(ot-kx) . (3)
Substitution of (3) into (1) ylelds the equation for ¥ as

vzq; - kzv]f =0 (4)
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Writing (4) in the elliptic coordinates we find (p. 173 of [3])

2 2
é-g + é—g - 2q(Cosh & - Cos M)V = O (5)

ot on

in which q = K262 /b,
If we now separate variables by assuming V¥(&,7) = X(&) @(q)

and introduce this into (5) we find

2
EL% + (a + 29 Cos 29)@ = O
on
(6)
3x
= - (a +2q Cosh E)X = O
13

These are respectively‘the well known Mathieu and Modified Mathieu equations.
In our case, q 1is negative. It is clear that we are concerned with only
periodic solutions in 7; the nonperiodic solution being untenable on
physical grounds for & complete elliptic shell. We assume that the Tluid
perturbations satisfy (6) and study the phase velocity for each perturba-
tion of interest.

The relationship between the fluid velocity normal to the shell
surface and the shell velocity in this direction i1s prescribed by the
kinematic boundary condition which is somewhat more involved than for a
circular cross section.

The kinematic boundary condition is (see eg. [4])

AR
on

0

gl
g=g, M=t

= - (g% + U-gg) . (7)
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In regions where the shell curvature does not change too drastically we
can replace OR/On by unity and d¢/Oon by d0/dr, but we shall retain
(7).

The fluid perturbatlion can have any required symmetry about the
major axes of the ellipse provided we choose appropriate Mathieu and
Modified Mathieu functions. To clarify the technique we shall restrict

ourselves to the case of a perturbation symmetric about both axes and by

using (6) and (3) we have

<D2m(§,n,x,t) = H Cegm(g; 'Q) Cezm(T], 'Cl) COS((Dt—kX) (8)

where H is an arbitrary constant, to be determined. To obtain other
types of symmetries we just replace Ce2m(§,-q) by Ce2m+l(§,-q) or
Se2m+l(§ -q) and so forth.

If we utilize elliptic coordinates in (7) we can write

a®2m

<2 - @ (9)

1 aRi
E=t E=t,

B2 3¢

where, according to [3]

Cosh 2 + Cos 2n91/2
0
R=e]: 5 ]

and

Cosh 28 - Cos 27 1/2
oyt
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We note that the Lamé coefficient B, of the first fundamental form
equals R only when Cos 27 << Cosh 2§o which occurs when the shell
cross section is reasonably close to being circular.

Substituting (8) into (9) and assuming for the transverse dis-

placement of the shell an expression of the form

w(n,x,t) = C cezm(n,-q) Sin(ot-kx) (10)
we obtain
HYZ Sinh 2§ d ce, (&,-a)
e63/2(149)(l+9)1/2 3E e ce, (1,-2)
= - (o-kU) C ce, (n,-q) (11)

where 6 = Cos En/B is less than unity for elliptic cylinder except in
the pathological case of the ellipse degenerating into the interfocal
line. As the ellipse tends to a circle, the Modified Mathieu function
tends to a Modified Bessel function, while the Mathieu function tends

to a Cosine and the two arbitrary constants H and C can be immediately
determined. In the general situation the problem 1s more complex and we
choose to solve (11) by a Galerkin procedure in that we multiply both
sides of the equation by ceem(nl-q) and integrate from O to 2x. In
doing this, the degree to which the binomial expansions in 6 are carried

out is important. Since B = (2/e2-l), the larger the eccentricity, the
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more terms are needed in the expansion to achieve a desired accuracy.

We shall restrict ourselves to relatively small eccentricit%gs and the
first power of 6 in the binomial expansion. In other words we retain
ﬁ_l compared to unity but neglect all higher order terms. We note that
B =4 for e=0.2 and B~21L for e = 0.3 so the influence of
ellipticity can be detected by the analysis.

From (11) we obtain

+/2 sinh 2¢_ 4 ce, (&,-q) ox
0 omt =2 9, 2
. 65/2 Idr_lg é (l + '2_) Ce2m(ﬂ:"C1) dTl H
E=t,
2%
= - (o-kU) C [ ce, (n,-q) dn . (12)
0

This ensures the normal fluld and shell wall velocities are equal, in
the Galerkin sense and we are in a position to consider the fluid pres-
sure exerted on the elastic shell. Introducing the shorthand M and

N for the integrals on the left and right sides, respectively of (12),

we have
Hz’(a’ku)%'eﬁxz :siizo'dc %g ) " C
2 Bin 0 Com' 574
dt leg

For linearized potential flow, the pressure is given by
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1/2 Cosh 2¢ ce, (&,-q)
_ 2NepB 0 2m % .
= C pf(c -kU) ¥ 1/2 SR €, - Ceeﬁ(ﬁrQ) cegm(nl—q) Sin(ot-kx) .
dg £,

For negative values of q the Modified or Radial Mathieu’functions are

expressible in terms of Modified Bessel functions (see eg. [3] p. 165) as

ce, (8,-a) = (-1)" ce, (0,a) z (-1)F apr T,.()
d Ceam(é,'Q_) m /2
3E = (-1) (O,q) 2(q) Sinh € E: (- l) A (7)
r=0

in which 7 = 2|q]l/2 Cosh & and where Iér(') denotes derivatives with

respect to the argument. Putting n = 0 in the above expression we obtain

Ce (g) "'(1)

d Ce
O(§ ~q) 'E=E

0

8o To(7) - By T,(7) + Ay T,(7)

" 2ol stnn g (82 1,(5) - AJ(L, () + T5())/2 + AJ(IL(Z) + I(3))/20 ]

where ; = 2]q|l/2 Cosh §o.
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Shell Theory.

90.

Since the prestress due to axial stretch and the quasi static

pressure difference across the shell wall are known to be significant in

;
wave propagation problems it is essentlal to utilize shell theory that

contains such terms.

This subject is reviewed in Chapter IV where it

is shown that utilizing Washizu's [5] theory we can write the following

equation of motion

where

11

12

31

22

25

il

it

u i1 0
[Lij] v| + pl¥| - 0] =0 (13)
w w P
2 2
o (1-v) o, 1
(1 +10) < + ( +N) 5 =5
o’ 2 ) B P ok
(1+v) 3
Loy =28 5o
v 0
"Iz TR
o] O
Uf) 2 (aew) . 0y F Mo ¥ 2 R
A e N B R 5 (2(1-v) -2 77 {)]
B2 x~ R° 12K X B O
o]
1oy Mo w1 ew) P
Boq 'R/ "RB M o2 B an B axzan
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In the general case all that remsins is to agsume suitable
functions similar to (10) for the axial and circumferential displacements,
substitute them into (13) utilize Galerkins method and after s consider-
gble number of algebraic menipulations, the analysis is reduced to that
of a classic eigenvalue problem. To illustrate the technique and pro-
vide the numerical data for the case of greatest physiological signifi-
cance we shall consider the lowest doubly symmetric mode, namely that which
degenerstes into rotetionally symmetric case for the circular shell. This
is accomplished by putting the subscript equal to zero in all the equations.

While this method of using the Mathieu functions reduces the solu~
tion to 2 third order eigenvalue problem, the algebra involved i1s tediocus

end we shall omit it. We agsume for the displacements, the form

u(n,x,t) = A ceO(q,—q) Cos (gt-kx) (14)
and similar expressions for the other two displacements. Since we are

concerned only with small values of q, we truncate the Mathieu functions

at the third term of the expansion. Thus we have, from [3], for example

Q s} O
cey(n,-a) = Ay + A; Cos 27 + A Cos ln (15)
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where A0 = 1, AD = (a/2) (1-7a°/56), A7 = (¢°/32) (1-%0q"/263). mhe
influence of terms of higher order than ”qu on the eigen so%utions was
negligible.

Substituting (15) into (14) and then into (13) and using

Galerkins method, we obtain the terms in the eigemmatrix as

- hAo(l+5A°/2)
¥, = (140) KW+ {ﬂ’g—vl + Ng} (;%—B-) [h(Ag)z + 16(AZ)2 4+ o - Iy ]
/2 r (1442 B2 + 4%/2)
() 2 o o .2 o By * Ay
] o 2
) 2\ o o (B, +AjB/2)
1/2 A2(1 +49)
I¥ = L¥ = 2 Wy - -2 I
13 = Y31 © ;"'7‘: o172 — 5
2
2B B
1, - (o) - [+ 16002 - ] + (52 4 x4 Ng(;.gﬁ [+ 5]
2 2
2 B -
h 2 >_{ 2 [ h] <j 2 > [ 2.2 u]j}
t15 (5 )4{2@-v) & (M=) + (5= ) [+ 16(B)7 +
12 < e2f3 B egﬁ I B
(1-A%/2 + A%E2/2)
2 o] o 2 ’-1' 2 )4' O, 2 o] o 2

o 8 . (ua® + A%%)
h 2 2 o o .2 i 274 2,..0,.02
B(F)(F) {2 raid =5 e dagui))]
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o 0.2
B 2 0 0.2 o 2 o 0.2 (1+Ah+3A2Bh/2)

3 2 .0
2 V(RN o s o o BB Y
12 e2B ez 2 yoy * B

+ (2-v) §° (2A + a0 Bu)]

= (14 )<:e ; > [ fo (24Au)} + N = N - Nﬁ <i >{h(AO) +l6(Au)

0 O O o}
A (4-10.) 2 2 AS(Lk+1oa))
L 2 h l 2k 042 0,2 2 L

o]

+ s [16(A§)2 + 256(AZ)2

e B B

3.4. Discussion of the Results.

The eigenvalue problem was solved by using a digital routine
capable of handling nonsymmetric matrices and by defining all the para-
meters except 02, which is the eigenvalue. It is noted that the elements
of the matrix are nonsymmetric only with respect to terms that are of
order B-l. Clearly these terms are of questionable accuracy and when
deleted the change in the eigenvalues was entirely negligible. It is
also self evident that the approximations Introduced preclude the use of
this work for very large eccentricities. A check of all cases with a two
term solution of (15) was made by taking Ai = 0. It was found that

adequate accuracy was achleved for eccentricities up to 0.5 but for higher
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values the results are suspect. Noting the interdependence of B and
e, this 1s not at all surprising.

On reviewing the equations, it takes little effort ;o show that
the theory does indeed converge to the results for a circular cross
section as the eccentricity tends to zero. This is amply demonstrated
by the results in Table 1. In this table we see a very small effect of
eccentricity on the phase velocities for all three types of waves. The
circumferential prestress due to uniform internal pressure in a cylinder
of noncircular cross section is not a simple problem in membrane theory.
Therefore this preliminary study of the effects of ellipticity of the
cross gection on the wave transmission characteristics was restricted to
zero circumferential prestress. In Chapter IV, it is shown that the dis-
placements and rotations of the circumferential prestress resultants must

be accounted for to obtain physically meaningful results.

3.5. Conclusion.
The influence of eccentricity on the phase velocities of perturba-
tions represented by the zeroth order Mathieu functlons are, for eccentri-

cities less than 0.5, very small.
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h = h/a

1j

M, N

(o)

p = (1-v%)B/Eh
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NOTATION

Characterlistic number of the Mathleu function’
Semi major axis of the ellipse and normalizing
geometric dimension

Coefficlents of the Mathieu and Modified (Radial)
Mathieu Functions

Lamé parameters of the shell midsurface

Modified (radial) Mathieu Function of order 2m,
with negative ¢

Mathieu Function of order 2m with negative ¢
Young's modulus
Eccentricity of the ellipse

Nondimensional shell thickness

Differential operators of the displacement equilibrium

equations

Nondimensional wave number

Integrals defined in (12)

Nondimenslional prestress resultants

Coordinate normal to the shell midsurface

Nondimensional pressure



u, v, w

Xy, ¥y Z

97.
kzez/h
Nondimensional radisl coordinste
Nondimensional time
Nondimensional fluid velocity

Nondimensional shell midsurface displacements

Cartesian coordinates

(2/e°-1)
2]q|l/2 cosh &
Polssons ratio

Elliptic coordinates

Nondimensional shell wall density, which is unity

becguse of the cholce of normalizing constants
Nondimensional fluld density

Nondlmensional frequency
Normalizing frequency

Nondomensional fluid potential function

Bar over & symbol denotes a dimensional quantity
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CHAPTER IV

APPLICATION OF VARIOUS SHELL THEORIES TO BLOCD FLOW PROBLEMS

4.,1. TIntroduction.

In many situations involving the Flow of bleod within the
vascular system, as in the case of primary arteries, it is essential to
account for the significant prestressed state, about which the pulsations
take place. In addition to this, it is clearly established that the
constitutive law of any tissue 1s very complex and there is evidence,

e.g., [1], [2] that arteries and veins, over their full range, including
the exclised state, exhibit some of the characteristics of locking solids
[3]. However for a number of investigations we are primarily concerned
with the behavior of the vessel in a small neighborhood of a quasi-static
prestressed state. For such cases the perturbation strains of interest
are small and it is reasonable, at least as a first approximation,to treat
the vessel wall materiasl as perfectly elastic and consider the prestressed
state as given. Once this is done the equations of elastic shell theory
become applicable to blood vessels and we shall now discuss certain facets
of this theory, as it applies to cylinders, in particular those of circular
cross section.

In reviewing the well known literature, e.g., [4] to [L3] of this
type of problem it is immedistely obvious, as 1n many other fields of shell
analysis, that the equations used by the various authors do not agree in

all respects. Another subject of considerable interest is to note that
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unlike metal structures, the strains induced by the prestress in the
primary arteries are not negligible compared to unity. Fur}hermore Biot
showed in 1938 [14] and reviewed in his book [15] the fact fhat the stress-
strain law for the incremental deformations, relative to the prestress
state is, in rectangular Cartesian coordinates, non-symmetric, for pre-
-stress states which are not hydrostatic. The same conclusion is reached
by Pfluger [16]. Therefore it is desirable to review the cylindrical
elastic shell equations for linearized perturbations about a given pre-
gtressed state, in an attempt to illustrate some of the questions raised.
Since many of the points we wish to maske can be illustrated using cylinders
of circular cross section we shall take advantage of the algebrailc simplicity
of having the second Lamé coefficient equal to the constant radius of the
shell, in certain investigations while retaining general cross sections in

others.

4.,2. Bolotins Dynamic Stabllity Equations for a Circular Cylinder.

Since the dynamic stability of shells has been a research topic
of considerable interest over the past decade and is likely to remain so
for many years, it is tempting to utilize the equations presented in a
well known text. As an example there 1s [T7], in which Bolotin considers
the dynamic stability of circular cylinders and gives the differential

equations describing small perturbations about a prestressed state:

u X
W Z
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in which, after correcting some typographical errors in [T]

2 2
Ly = az + (1-;) 52
Ox’ 2R dp
O o]
N € 120 B e Tl

12 =M1 TR =% T R %0

s (- M) o

L.y _ x4
13~ "R 3x R 3x
R T R € ) -
22 RE 5¢2 2 aXZ
1 9
Loz = = bsp =~ 5 35
v 9
Ls1 "2 &
2 2
L53 = - V v o+ N —= + i <}——— - ¥>

and X, Y and Z are the applied midsurface loads per unit area. One

of the most interesting aspects of these operators is that L is not

13

the adjoint of L except when N; = NZ in which case the only "prestress

51
ternm” appears in operaﬁor L33.
Reviewing Bolotin's derivation we see that i1t 1s based on the
determination of certain "reduced (membrane) loads". These are obtained
by writing the linear membrane equations in terms of the Lamé coefficients

and then replacing these by their values in the deformed state, to obtain

a set of geometrically non-linear (large displacement) membrane equations.
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This technique does not produce the same large displacement membrane
equations as those described by other authors. Also, Bolotin's equations
exhibit non-self adjointness in one of the operator pairs even though

his theory is based on the assumption of small strains. It is well known
that all linear differential equations derivable from a varlational principle
must be self adjoint. Hence his equations for the incremental reduced

loads should be scrutinized. The basic idesa of using the large deflection
menbrane equations to obtain the membrane presiress terms is valid, but
obtaining these equations by replacing in the linear equations A Dby

A(L + Ell) and B by B(1 + 122) is not satisfactory as we shall now

demonstrate.

If we restrict ourselves to E;B = 0 for this purpose, Washizu's
membrane equations [12] for cylinders with A =1 and R&l = 0, we can
write

{N (L +2 )} L2 (N £..) +X =0
11 5‘ 12
N, £
19 p_32
55 Ml + i) + g = (0 %)) - Rt 0 (@)
2 (M, 25) + 33 (0 4gy) + 2 (1 + 4y) 42 =0
31/ "B OB $an

where the zij are the linear strains and rotations, namely

=
Il

ov/ X

it

du/d; L, = (1/B) du/og; 4

11 21

L
]

oo = (1/B) 3v/3p - w/Ry; by = 0 = 3/

252 =w, = V/RB + (1/B) ow/X.
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The technique for obtaining the equations Tor the incremental
or "reduced" forces due to the prestress (labelled by some authors as
variational equations) is to express each dependent variable as the sum
of the value corresponding to the zeroth (basic membrane) state plus a
perturbation. Then we make use of the fact that the shell is in equilibrium
in the zeroth state and retain only those terms that are of the first
power in the perturbation quantities. To simplify the algebra without

deleting anything significant for our demonstration, let us restrict our-

selves to cylinders in which B = RB’ Ngg = 0 and the membrane prestress
resultants, W; and Ng are constants. Then we have

+X' =0

QZ
J
+
|
(9%
w

O
odu M 3/ 1
R, OB

(o) o o]

N 2 N v N
_@.—C\’—(ia")'+N°M-_@_-_E{ﬁ )+ %iv-o 0
RB B ‘BB RN Rg RB OB Rﬁ R5 B

NO 3
_é{_é_<1>+_l_ﬁ + 2 B{ <l W _W_>}+Z.=o.
RB oB RB RBBB 5B \ R, OB 6

These equationsg are self adjoint in contrast to those given by Bolotin.
While this review of Bolotin's equations may be of interest,

it does not help explain the differences in the equations proposed by

other authors. Many have used the principles of virtual work or minimum

potential energy, but the results depend on the strain displacement rela-

tions utilized. For theories applicable primarily to metal shells, the

neglection of the nonlinear terms involving the inplane displacements in
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these relations has been proven permissible. However we shall retain
these terms to study thelr effects in the case of blood vessels and pre-

sent Washizu's [12] theory for a cylinder of general cross section.

4.3, Equations for Cylindrical Shells Under Initial Stress when the

Strains are Negligible Compared to Unity.

Let us now restrict our attention to those sets of equations in
which the strains are considered negligible compared to unity, while
retaining all terms involving the prestress resultants, but relax the
assumption that the cross section is circular. Once’this particular
small strain assumption is invoked, Washizu's equations [12] can be
utilized directly and the matrix of differential operators for a membrane
prestress state in which the axlal and circumferential stress are constant

and the inplane shear stress is zero, become

o O
R (2 £ ¥ 3
Lll_aa2+ 5B 8)+“ aa2+B5(B§)

32
12 Y217 2B op
9

v
T U - W
2 N> NS 2
_lo 19y, (-v) & B, B3 L3 0 _d
e 5B G Tz 2 2 T®E® TTayy
B




105.

(s ]
13 Mo >, 2 135,13 13 L (ev) P
LzE""ﬁ”B’E('RE) R.B 9B 12k, IS 5GP B N

Q
LBZ’R;B&%““EI;B'B’%(T?;) 122{5%(:88{3 ( >>>
()

C o0 P Mo o1a, W 2 2 2
b3 2t Nt G 2T
B >

As we would expect, the prestress terms are the same as those
in (3). The operators L23 and L32 differ by more than the sign, but
recalling the definition of a self adjoint differential operator it can
be shown that they are the adjoints of each other. For two dimensional
systems, the adjoint operator of d{a(a,B) u(a,B)}/d, where af(q,B) is
a coefficient of the independent varisbles only, is by definition
(-1) a(x,B) ou(a,B)/Ba and similarly for higher order derivatives. We
note that since all cylinders are developable surfaces it is alﬁays possible
to choose coordinates such that both Lemé parameters are unity, i.e., ve
can replace BdB by ds vwherever convenlent. This 1s particularly advan-
tageous when demonstrating that the operators are self adjoint. For a
circular cross section, the operators of (4) can be easily simplified by
putting o =x, B = and Ry =B = R.

The prestress terms in these‘operators are then precisely those
obtained by Armenskas and Herrmsnn [17]. They can also be derived by a

variational method when the nonlinear in-plame displacement terms are

retained in the strain-displacement relations and the strains are considered
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to be small. However, when the clrcumferential prestress is due to
hydrostatic pressure, [17] shows that certain prestress terms are cancelled
by force components that arise from the rotation of the applied pressure.
This fact is particularly important as we shall demonstrate later, but is
usuglly not mentioned in the litersture.

Tt is of interest to note that Flligge's equations, as used by
Anliker and Maxwell [18] are identical with those of Herrmann and Armensakas
[13] and the succeeding papers based on this work; if the same assumption
1s made cqncerning the application of the prestresses. In [18] the suthors
consider that after the axlal prestress is applied, axisl expansion of
the cylinder 1s prevented while the cylinder pressurized., This yields an
axial prestress resultant of N; + 11N°, rather than N; if the shell
is not restrained. We allow the vessel to be unrestrailned. In our nota-
tion the corresponding self adjolnt operators for the theories based on

[4] and [13] are

. > §% 2
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The differences between (4) and (5) arise from two different causes.
Firstly in (5) the equilibrium equations in terms of the stress resultants,
the last terms in the operators L13 and LBl do not occur in Washilzu's
derivation. However they have —N;(v + aw/Bﬁ)/R2 in the second equation
and —NZ(W + av/BﬁS)/R2 in the third that do not appear in (5). These
discrepancies will be shown later to be caused by neglect of the changes
of the hydrostatic pressure force component that occurs when the shell
undergoes perturbation rotations and midsurface strains. Secondly the
other differences that do not involve the prestress terms are due to [4]
and [13] using, for the definitions of the stress resultants expressions
such as

h/2 ;
N, = {h/z cx(l + ﬁ) dz
while in many other works, Z/B is neglected compared to unity. These
terms are recognizable in (5) as those containing d2 in all’operators

except L23, L., and L

32 33°

In spite of the efforts of many investigators and as we have
Just partially demonstrated there does not appear to be a generally accepted
"correct" set of equations based on the Kirchoff-Love hypothesis which

describe the behavior of prestressed thin shells. For many investigations,
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the "small strain and moderate}y small rotatlons” aséumptions hag fre-
quently been Iinvoked to remove the nonlinear terms in u and v from
the strain displacement relations. While controversy over tﬁe linear
formulation has been very pronounced untlil recently, we are even further
from complete agreement on the equations that should be used in the non-
linear problem. There is no intent here to devise a new approach to the
general problem but rather to review existing knowledge to explain certain
facets of the behavior of prestressed cylindrical shells of general cross
section Vhile retaining the assumption of small strains, but admitting
rotations about the normal to the midsurface

Koiter [5], Naghdi [6], Kempner [8], Dill [9], Sanders [10], and
Budiansky [1l] are among those who have devoted considerable effort to
geometrically nonlinear shell problems. As an example let us consider
the equations on [10], which allow for the rotation of the shell element
about the normal to the middle surface. With this degree of complexity

we have, for the strain-displacement relations
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The terms underlined by dashes represent the influence of rotation about
the normal to the middle surface. In many types of problems it 1s justi-
flable to state that the rotation normal to the middle sur%ace is markedly
smaller than the two rotations about axes in the plane of the middle surface.
When this assumption 1s justified and the underlined terms are removed
from (6) we have the strain displacement relations which are frequently
used In Investigations of shell stability. It is worth pointing out that
nonlinear terms have been retained only in the direct strains, leaving the
curvatures as linear in the displacements. Sanders [10] shows that retain-
ing all terms in (6) ylelds the following differential operators in the
displacement equations of equilibrium for a circular cross section when

N§¢ = 0 and the other two prestress resultants are constants:

2 2 2 (x° +ﬁ°) 2
_§__+(l-12/2<l+§ﬁ_> 82+ x " 97 d
2R /o

L.. =
s oo
Q o]
L -1 - (1+v) a ) 3(l—v)d2 > _ (Nk + Nﬁ) i
12 7 721 " 72R 3xop B8R oxop = ___2R____ Ixop
2 5
v 9 , (1-v) & d
L = -1 = == +
31 13~ R Ox .- axa¢2
(7
. (e] o (o]
. =(14d2) 82+(l-v) <1+9a2>__a_2__fv_;z_5+(mx”\‘¢) 3
20 2 3 ¢2 2 T N » 2 N2

- o - -

13 & ¥ 3w ¥ Yo
2o Rz‘Sﬁ

32

33 =



110.

These operators are self adjoint and differ quite considerably from (3)

as we would expect since certain large inplane displacements are neglected

in (7).

Lh.4. Geometrically Non-Linear Thin Circular Cylindrical Shell Analyses

Allbwing for Large Strains.

In studying most of the contributions mentioned that are based
on the small strain assumption, it is soon demonstrated that the displace-
ment equilibrium equations are self adjoint and thus, for the thin circilar
cylinder can be written in symmetric form. Since self adjolntness reduces
to symmetry in cartesian coordinates we have reason to be curious about
this conflict with Biot's and Pfluger's demonstrations that the equations
of elasticity for incremental deformations are non-symmetric in cartesian
coordinates. The clue to this paradox comes from the fact that the majority
of authors on shell theory, neglect, in the strain displacement relations,
all non-linear terms involving the tangentisl displacements u and v.
This means that they assume small strains and rotations, from the start.
Self adjointness of differentlal operators, at least as usually defined
(see e.g. [19]) has meaning enly for linear equations. Hence when the
potential energy contains displacement terms to powers higher than the
second, the self adjointness of the final equations from which the eigen-
matrix is formed, depends on the assumptions made to linearize the Euler
equations of the variational method. Two contributions which retain the
nonlinear terms in u and v are Washizu [12] and Herrmann-Armenakas [13]

whose strain displacement relations for a clrcular cylinder are
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(8)

Inéerting (8) into the expression for the strain energy, neglect-
ing z/R relative to unity and utilizing the calculus of variations in
the time honored manner, we obtain the large displacement equilibrium
equations which were derived by Washizu using the theorem of virtual

displacements. They are
d Neparl .15 (M _
= Nx(l+£x)+ R -% +§-BE —ﬁ-%'i-ﬂxﬁ(l*‘,@x) +X =0

% 5% Ng(L +£g) + Ny %} + o% {Hx % * Nyl + %)}

-% {Nﬁwx+NX¢w¢ +%a§% +%‘é}+Y-=O (9)

gai NX (D¢ +NX¢ (Dx} +%£{N¢ (Dx + NXQS (D¢}+N¢(l+ﬂ¢) +% NX¢ %E
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in which we have used the linearized strain displacement relations
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£x=%‘%; z¢=—]ﬁ(%-w); O =

-

(g% +7); ®g = g; .

These equilibrium equations consist of terms of two types, ﬁamely stress
resultants and thelr derivetives plus stress resultants times midsurface
rotations, which constitute the equations usually found in shell analyses
which invoke the "small strain"™ assumption. The second type of terms are
those conslsting of stress resultants times midsurface strains. These
latter terms result from a varlational formulation only when the non-
linear terms in the in lane displacements are retained in the strain-
displacenent relations. When equation (h) are particularized for a
circular cross section and we introduce into (9) the assumption that the
strains are negligible compared to unity, +the resulting equations are
identical.

The complexity of the equations describing the motions relative
to the prestressed state, depend, to a large measure on the prestressed
state. A simple situation, of frequent interest, particularly in the
field of blomechanics 1s when uniform axial stretch and internal pressure
constitute the prestressed state. When solving the linear membrane equa-
tions for this loading, we obtain for a circular cross section N; and
Nz as constants and N:¢ vanishes. For non-circular shells the prestress
solution is much more invéelved. If we now assume an isotropic shell in
which the Young's modulus is independent of the prestressed state the
perturbation equations derived from (9) assume a relatively elegant form.
To obtaln them, we use the standard technique of inserting Nx = Ni + Ni,

du/dx = du®/dx + du'/d3x ete., extracting all terms involving only the
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zeroth state and assuming that the primed quantities are all small enough
for their products to be negligible.
Now we may write the equations for perturbations about a pre-

stressed state defined by the constant strains in differential operator

form as
u X
[Lij] vl + ly| =0 (10)
W
where
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It is clear that these operators are self adjoint for large strains only
when 22 = z;, i.e., when the prestress state is hydrostatic, substantiating
completely Biot's and Pfliger's conclusion. The usual manner in which the
influence of>the prestressed state is illustrated (see for example [1k4],
[15], [16]) is to show that the non-symmetry in Cartesian coordinates
occurs in the stress strain relations and the degree of asymmetry is of
the order of the initial stress as divided by the elastic modulus. In

our derivation the classic symmetric stress strain law was assumed and
the non-self adjointness was also shown to be of the order of the initial
strain. In virtually all metallic structures the initial membrane strains
are indeed negligible compared to unity and the operators in (10) can be
simplified to those resulting from (4) and (9). However in blood flow
problems they can be‘as high or higher than 0.6 and neglecting them is
less justified. Throughout our discussion 1t must be borne in mind that

while an elastic stress strain law is reasonable for the perturbation

stresses in the blood vessel, but it is not valid for the prestressed
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state. The determination of the actual prestressed state in blood
vessels 1s extremely difficult compared with virtually all metal structures
experiments. ﬂ

The equations we haye dlscussed are considered typical cof the
literature and to see how significant some of the differences are, let
us turn to the numerical evaluation of the phase velocities.

To study the importance of théassumptionsumde in the shell
theories that have been discussed in relation to certain biomechanics
problems, it is of interest to compute the phase veloclty as a function
of frequency and prestress levels. The digplacement relations for axially
propagating waves in a cylinder of circular cross section were substituted
into the equatlons of motion and the resulting eigenvalue problem solved

for specified wayve numbers. The form of the displacement relations was

u(x, #, t) = A Cos kx Cos sf Sin ot
v(x, §, t) = B Sin kx Sin sp Sin ot (11)
w(x, P, t) = C Sin kx Cos sf Sin ot

These were inserted into (7) for Sander's [10] theory and (10) for

. Washizu's [12] theory and into (5) for the Anliker-Maxwell utilization of
Flugge's [4] theory and Herrman-Armenskas [13] theory. The computations
were also accomplished using Budiansky's theory [11]. The substitution
of (11) into (5) and (7) leads to & symmetric matrix becausé of the self
adjointness of the operators, but that derived from (10) naturally remains

nonsymmetric.,
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4,5, Pregentation of the Numerical Results snd Discussion.

A digital program was wrltten.using a readlily availlable non-
self-adloint eigenvalue routine to extract the modes and fr;quencies
for prescribed shell-fluld psrameters and wave number. After using the
results presented by Anliker and Maxwell [18] to check the accuracy, the
nondimensional wave speeds were found as functions of the nondimensional
frequency for the theories mentioned previously. The results are shown
in Figs. 1 and 2 and correspond to axi-symmetric waves. The former
shows the influence of axlial stretch, while the latter illustrates how
the wave speeds vary as a function of transmural pressure. Data for
the s = 2 waves did not show any differences from the Anliker-Maxwell
results that could be considered significant for physioclogical applications
and therefore have not been 1llustrated.

For axi-symmetric waves and N; = 0, the predictions based on
[10], [11], [20] and our equation (5) agree very closely with each other
for the type I and type III waves. The lack of agreement with [18] is
solely due to the different assumption concerning the prestress applica-
tion. The behavior of Washlzu's theory will be reviewed presently.

A somewhat surprising result 1s that unlike other shell equa-
tions, those of Sanders and Washizu predict a cut~off frequency for the
type ITI or torsion waves wheneyver the shell is subjected to transmural
pressures (see Fig. 2). The cause for this can be seen by noting that
the equation for axi-symmetric torsion waves is

82

v
I v - — = O
22 Btz
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since for s = O, ng = L21 = L32 = L23 = 0 and the equilibrium equa-
tion for the circumferential torsional direction becomes uncoupled from
the other two. For the Anliker-Maxwell [18] utilization of Fligge's

theory we have the characteristlc equation

2
(]_..v) ._(L,g_d_l +N§ + v

P

£ “31

k
in which the term vﬂg venishes when we use (5). According to this equa-
tion the torsion waves are nondispersive and have no cut-off frequency
below which they do not propagaete. This i1s in contradiction with the other
two theortes mentioned, For example, from (10) we have according to

Washizu's [12] theory

(l+€z) 2 le] o

5 g (1-v) 5 + 247 (1-y) + X N

x p
C = (E) = [ o ] + )

pK

while Sanders' [10] theory yields
o o
[ -E) = - + )
p ok

In both of these cases 1t is the last term (Ng/pkz) that Introduces
both the dispersion and the cut-off frequency from non-zero transmural
pressure. As the wave number approaches zero, so does the frequency and
the wave speed becomes very large as the frequency approaches zero, and

we obtain the cut-off frequency. The existence of the cut-off frequencies
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is demonstrated by noting that for finite values of o0, k can be zero.
In fact, the above equations show that '02 = Nz/p for zero wave number.

1/2 1s the cut-off frequency below which waves do

Therefore o = (Hg/p)
not propagste.

This behavior for the rotationslly symmetric torsion waves is
so completely contrary to all experimenkal evidence that it cannot be
glossed over. An explanation for the case of shells subjected to hydro-
static pressures is given 1n the paper by Herrmenn and Shaw [20] (which
uses the equations derived in [13]). It is shown that the erroneous cut-
off frequéncy arises when certain terms are omitted in the derivation of
the equations by neglecting the change 1n the direction of the hydrostatic
pressure force induced by the perturbation rotations. If we retain these
terms and use equation (16) of [20], the equilibrium condition for the
rotationally symmetric torsion mode and for pressures acting on the shell

midsurface is

, o
{(l—v) _(_1:_253)_ + Ni} 32; - N’é; - 52‘5 +&Fy =0 (12)
ox R ot
where AFﬁ = sz/Rz, is the change of the circumferential force component
arising from the displacement. By taking the pressure to act on the shell
midsurface the moment components Am¢ and n discussed in [13], [1T7]
and [20], are identically zero. If we substitute the above expression

for Aﬂ%é in (12) it becomes

2 2
{Q;—"l (1+3d°) + N, -5——2‘5 - —a-%’ =0 . (13)
ox St
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The gquestionable terms in Washizu's and Sanders' theories has been
cancelled out by 'AF¢ and the éorsion waves are now also nondispersive.
This demonstrates the difficulties that can arise when thé displacements
and rotations of a prestressed system are béing neglected while the stress
resultants are retained. For many metal shell analyses this approximation
may well be entirely satisfactory. In the case of blood vessels however,
the displacements and rotations are generally much larger than in metal
structures and must be properly accounted for. For a circular cylindriecal
shell, this is accomplished by using either the equations of [1l] or thosme
of [13] and [20], which reduce to those of Fligge [4]. Hence the results
given by [18] are indeed correct.

However, if we accept the reasoning of Armenakas and Herrmann
in [17] which is also employed in their subsequent paspers, e.g., [20],
the torsion waves retain their cut-off frequency in the case of constant
direcfional pressure since AF¢ is zero in this situation. This produces
g cut—off‘frequency and therefore results which we alsc find to be at
variance with our intultion.

Consider an infinitely long shell whose intermal pressure does
not change direction and which 1s undergoling rotationally symmetric
torsional oscillations. The rotation about the tangential base vector,
namely Ow/dx does indeed vanish. Therefore, AF, 1is zero. However,
the other component of rotation of the normal to midsurface is v/R, and
therefore not zero and AFﬁ is again equal to Ngv/R. Thus the extraneocus

term causing the cut-off frequency 1s always cancelled out. This small
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modification is of little physical significance since the fluid pressure
is hydrostatic in virtually all cases of practical interest.

The contributions to the equilibrium equations of the terms
involving the applied pressure times the perturbation rotations and strains
are accounted for by Budiansky [1l1]. The two inplane equilibrium equations
contain the rotatlons times the hydrostatic pressure while in the normal
equation the pressure is multiplied by the sum of the inplane strains. A
situation entirely analagous to the one involving the behavior of the
torsion waves, occurs in the third equilibrium equation. The variation
of the strain energy ylelds a term which is cancelled by the pw/R element
in the expression accounting for the hydrostatic pressure. The neglect
of this pressure term is the cause of the behavior of Washizu's equations
and all others which mske the same approximstion. Thus Sanders' theory [10]
predicts phase velocities that are independent of internal pressurization
for types I and III waves by properly accounting for the change in direc-
tion of the pressure. This is also true in the theories of [11] and [20]
in addition to our form of Fllgge's theory in (5). The only reason for
the dependence on intermnal préssure of phase velocities for the rotationally
symmetric modes in [18] is due to the method in which the prestresses are
applied.

Another ifem of interest in connection with the torsion modes
is that the results of [18] do not exhibit the same dependence on axial
prestress as does Fig. 2. This discrepancy has been explalned by noting
the different methods in which the prestress is appllied. In our applice~

tions, we did not restrict the axlial motion and hence applylng the pressure
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does not.contribute to the axial prestress. It should be mentioned that
this latter assumption affects the torsional phase velocities. Howeﬁer,
1t is not necessarily representative of blood vessels under "in vivo"
conditions\since they are anchored by branches and connectiﬁe tissue and
therefore do not change their length with pressure..

A third item of interest illustrated in Fig. 1 is the consistent
nondispersive character of the type III waves. Only Sanders' theory pre-
dicts axial phase velocitlies independent of axial stretch while the other
theories applied, in particular Washizu's; show a strong influence of
axial stretch. The reason for this 1s to be found in the absence of the
(au/ax)2 term in the expression for the axial strain and its influence
on the operator Lll' For rotationally symmetric'anes, the Lll coeffi-
cient in the‘frequency determinant for Sanders' theory 1s simply k2 while
in the other two theories it is k2 times a function of the axial stretch
which accounts for the noted dependence.

Another interes%ing‘result of the method of application of the
prestress comes to light when we note that in (5), all the phase velocities
are independent of internal pressurization. This disagrees with [18] only
because of the previously mentioned application of the prestress, which
results in terms involving Poisson's ratio times the circumferential pre-
stress resultants. In our application of Flligge's theory,\all three types
of waves are independent of pressurization w%thin drawing accuracy of the
curves shown in Fig. 2.

Attention has been drawn to the fact that the "large strain”

form of Washizu's equatlions are non-self-adjoint and thus we know from
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well establiéhed theory (e.g. [l9])that the eigenvalues of the bagic system
and its adjoint are identical, but that the eigenvectors of the two systems
are different and form a biorthogonal set. The adjoints of £he operators
in (12) are easily found by replacing 2; by ez and vice versa in the
off-diagonal terms. The modal amplitude coefficients were indeed slightly

different and we provide the following table as typical results.

TABLE T

TYPICAL MODAL COEFFICIENTS FOR THE ANLIKER-MAXWELL AND
WASHIZU THEORY FOR N; = 0.k, Nz =0 AND k = 5.0

Wave Shell Theory Modal Displacement

Type Washizu [12] Washizu [12]
Anliker-Maxwell [18] Basic System Adjoint System
Axial} Torsion|{Radial| Axial|Torsion|Radial| Axlal |Torsion| Radial

I|-0.04k4l0 1.0 [|-0.0469| © 1.0 - .0335] O 1.0
II| 0 1.0 0 0 1.0 0 0 1.0 0
IIT| 1.0 |0 0.0kl 1.0 0 0.0335{ 1.0 0 .0ké9

For this demonstration all coefficients less than 10-5 in absolute value
have been replaced by zeroes in Table I.

These resulfs 1llustrate the theory by showing that for the self
adjoint operators of [18], the modes are orthogonal, while those of [12]
for both the basic and adjoint equations are not orthogonal, but they are
biorthogonal. However, the fact that the modes predicted by [12] are not

guite orthogonal is of negligible importance in the study of pulse waves.
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4,6. Conclusions.

The phase velocitles predicted by the small strain theories of
Herymsm and Shaw [20], Budiansky [11] and our application of Flligge's
theory [U4] are considered to be correct. Our results are nothing more
than those of Anliker and Maxwell [18] with a different assumption con-
cerning the application of the prestresses. All three wave speeds are
esgsentially Independent of internal hydvwostatic pressure if the cylinder
walls are not axially constrained.

Both Senders [10] and Washizu [12], in addition to many other
authors predict a cut-off frequency below which no torsion waves are
propagated for non zero transmural pressure. This is demonstrated to be
caused by neglecting the force component induced by the perturbstion
rotation of the gpplied pressure. The importance of including these con-
tributions to the equilibrium sccounts for the correctness of the theories
mentioned. PFor future studies on shells of general geometry, those of
Budiansky [11] are recommended.

The nonself adj)ointness of the large strain theory of Washizu is
wshown to be of negligible importance for the physiological problems of

wave propegation in the arterial systems.
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NOTATION

Lam€ parameters

Nondimensional phase velocity
Normalizing phase velocity

h?/lz

Normalizing Young's modulus
Linear midsurface strains
Nondimensional shell wall thickness
Nondimensional wave number
Differential operstors
Midsurface strains and rotétions
Nondimensional moment resultants
Nondimensional force resultents
Nondimensional radiil of curvature
Normalizing geometric dimension

Nondimensional midsurface displacements in

the axial, tangential and normal directions



x,

X,Y,2 = i(l-vz)/ﬁ h, ete.

a, B

Kd,KB,Kdﬂ

A= VR,

o = b By(1-v°)5/E
g = 6/50

5 = B/p Bo(1V7)
Wy wb

v V() =

Superscripts

125.

Axial and circumferential coordinates of

a circular cylinder
Nondimensional applied force resultants

Axial and circumferentisal coordinates of
a general cylinder

Nonlinear midsurface strains
Curvatures
Nondimensional wave iength

Nondimensional density

Normelizing frequency

Rotations

() /et + 23+ ) /BRadPRER + 3t (- /Bt

Denotes a dimensional quantity

Denotes a prestress gquantity
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DISPERSION CURVES FOR AXISYMMETRIC WAVES
WITH ZERO TRANSMURAL PRESSURE

NOTATION
MAXWELL ANLIKER [l181],

BUDIANSKY (111 AND HERRMANN-SHAW [201
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Dispersion Curves of Axisymmetric Waves for Zero
Transmural Pressure Predicted by Different Shell Theories
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DISPERSION CURVES FOR AXISYMMETRIC WAVES
WITH ZERO AXIAL STRETCH

NOTATION

MAXWELL ANLIKER [181
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~——-—— SANDERS [I0]

------------- HERRMANN ~SHAW [201, BUDIANSKY Lil1]
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Fig. 2. Dispersion Curves of Axisymmetric Waves for Zero

Axial Sketch Predicted by Different Shell Theories



